【Spark MLlib】(一)架构解析(包含分类、回归、聚类和协同过滤)

简介: 【Spark MLlib】(一)架构解析(包含分类、回归、聚类和协同过滤)

文章目录


一、前言

二、MLlib的底层基础解析

三、MLlib的算法库分析

四、MLlib的实用程序分析


一、前言


从以下架构图可以看出MLlib主要包含三个部分:


底层基础:包括Spark的运行库、矩阵库和向量库;

算法库:包含广义线性模型、推荐系统、聚类、决策树和评估的算法;

实用程序:包括测试数据的生成、外部数据的读入等功能。


20200401133024392.png


二、MLlib的底层基础解析


底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPACK开发的线性代数库Breeze。


MLlib支持本地的密集向量和稀疏向量,并且支持标量向量。


MLlib同时支持本地矩阵和分布式矩阵,支持的分布式矩阵分为RowMatrix、IndexedRowMatrix、CoordinateMatrix等。


关于密集型和稀疏型的向量Vector的示例如下所示。


20200401133730721.png


2020040113513093.png


疏矩阵在含有大量非零元素的向量Vector计算中会节省大量的空间并大幅度提高计算速度,如下图所示。


20200401135158162.png


标量LabledPoint在实际中也被大量使用,例如判断邮件是否为垃圾邮件时就可以使用类似于以下的代码:


20200401135217477.png


可以把表示为1.0的判断为正常邮件,而表示为0.0则作为垃圾邮件来看待。


对于矩阵Matrix而言,本地模式的矩阵如下所示。


20200401135537747.png


分布式矩阵如下所示:


20200401135522529.png


RowMatrix直接通过RDD[Vector]来定义并可以用来统计平均数、方差、协同方差等:


20200401135634843.png


20200401135639891.png


而IndexedRowMatrix是带有索引的Matrix,但其可以通过toRowMatrix方法来转换为RowMatrix,从而利用其统计功能,代码示例如下所示。


20200401135809765.png


CoordinateMatrix常用于稀疏性比较高的计算中,是由RDD[MatrixEntry]来构建的,MatrixEntry是一个Tuple类型的元素,其中包含行、列和元素值,代码示例如下所示:


20200401135832611.png


三、MLlib的算法库分析


下图是MLlib算法库的核心内容。


20200401140248412.png


在这里我们分析一些Spark中常用的算法:


1) 分类算法


分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类。分类在数据挖掘中是一项重要的任务,目前在商业上应用最多,常见的典型应用场景有流失预测、精确营销、客户获取、个性偏好等。MLlib 目前支持分类算法有:逻辑回归、支持向量机、朴素贝叶斯和决策树。


案例:导入训练数据集,然后在训练集上执行训练算法,最后在所得模型上进行预测并计算训练误差。

import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
// 加载和解析数据文件
val data = sc.textFile("mllib/data/sample_svm_data.txt")
val parsedData = data.map { line =>
  val parts = line.split(' ')
  LabeledPoint(parts(0).toDouble, parts.tail.map(x => x.toDouble).toArray)
}
// 设置迭代次数并进行进行训练
val numIterations = 20
val model = SVMWithSGD.train(parsedData, numIterations)
// 统计分类错误的样本比例
val labelAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count
println("Training Error = " + trainErr)


2) 回归算法


回归算法属于监督式学习,每个个体都有一个与之相关联的实数标签,并且我们希望在给出用于表示这些实体的数值特征后,所预测出的标签值可以尽可能接近实际值。MLlib 目前支持回归算法有:线性回归、岭回归、Lasso和决策树。


案例:导入训练数据集,将其解析为带标签点的RDD,使用 LinearRegressionWithSGD 算法建立一个简单的线性模型来预测标签的值,最后计算均方差来评估预测值与实际值的吻合度。

import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
// 加载和解析数据文件
val data = sc.textFile("mllib/data/ridge-data/lpsa.data")
val parsedData = data.map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0).toDouble, parts(1).split(' ').map(x => x.toDouble).toArray)
}
//设置迭代次数并进行训练
val numIterations = 20
val model = LinearRegressionWithSGD.train(parsedData, numIterations)
// 统计回归错误的样本比例
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2)}.reduce(_ + _)/valuesAndPreds.count
println("training Mean Squared Error = " + MSE)


3) 聚类算法


聚类算法属于非监督式学习,通常被用于探索性的分析,是根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似,常见的典型应用场景有客户细分、客户研究、市场细分、价值评估。MLlib 目前支持广泛使用的K-Mmeans聚类算法。


案例:导入训练数据集,使用 K-Means 对象来将数据聚类到两个类簇当中,所需的类簇个数会被传递到算法中,然后计算集内均方差总和(WSSSE),可以通过增加类簇的个数 k 来减小误差。 实际上,最优的类簇数通常是 1,因为这一点通常是WSSSE图中的 “低谷点”。

import org.apache.spark.mllib.clustering.KMeans
// 加载和解析数据文件
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map( _.split(' ').map(_.toDouble))
// 设置迭代次数、类簇的个数
val numIterations = 20
val numClusters = 2
// 进行训练
val clusters = KMeans.train(parsedData, numClusters, numIterations)
// 统计聚类错误的样本比例
val WSSSE = clusters.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)


4) 协同过滤


协同过滤常被应用于推荐系统,这些技术旨在补充用户-商品关联矩阵中所缺失的部分。MLlib当前支持基于模型的协同过滤,其中用户和商品通过一小组隐语义因子进行表达,并且这些因子也用于预测缺失的元素。


案例:导入训练数据集,数据每一行由一个用户、一个商品和相应的评分组成。假设评分是显性的,使用默认的ALS.train()方法,通过计算预测出的评分的均方差来评估这个推荐模型。

import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating
// 加载和解析数据文件
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map(_.split(',') match {
case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble)
})
// 设置迭代次数
val numIterations = 20
val model = ALS.train(ratings, 1, 20, 0.01)
// 对推荐模型进行评分
val usersProducts = ratings.map{ case Rating(user, product, rate) => (user, product)}
val predictions = model.predict(usersProducts).map{
case Rating(user, product, rate) => ((user, product), rate)
}
val ratesAndPreds = ratings.map{
case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map{
case ((user, product), (r1, r2)) => math.pow((r1- r2), 2)
}.reduce(_ + _)/ratesAndPreds.count
println("Mean Squared Error = " + MSE)


四、MLlib的实用程序分析


实用程序部分包括数据的验证器、Label的二元和多元的分析器、多种数据生成器、数据加载器。


2020040114103469.png

目录
相关文章
|
3月前
|
机器学习/深度学习 文字识别 监控
安全监控系统:技术架构与应用解析
该系统采用模块化设计,集成了行为识别、视频监控、人脸识别、危险区域检测、异常事件检测、日志追溯及消息推送等功能,并可选配OCR识别模块。基于深度学习与开源技术栈(如TensorFlow、OpenCV),系统具备高精度、低延迟特点,支持实时分析儿童行为、监测危险区域、识别异常事件,并将结果推送给教师或家长。同时兼容主流硬件,支持本地化推理与分布式处理,确保可靠性与扩展性,为幼儿园安全管理提供全面解决方案。
160 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
3 秒音频也能克隆?拆解 Spark-TTS 架构的极致小样本学习
本文深入解析了 Spark-TTS 模型的架构与原理,该模型仅需 3 秒语音样本即可实现高质量的零样本语音克隆。其核心创新在于 BiCodec 单流语音编码架构,将语音信号分解为语义 Token 和全局 Token,实现内容与音色解耦。结合大型语言模型(如 Qwen 2.5),Spark-TTS 能直接生成语义 Token 并还原波形,简化推理流程。实验表明,它不仅能克隆音色、语速和语调,还支持跨语言朗读及情感调整。尽管面临相似度提升、样本鲁棒性等挑战,但其技术突破为定制化 AI 声音提供了全新可能。
199 35
|
8月前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
320 3
|
4月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
505 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
4月前
|
存储 机器学习/深度学习 应用服务中间件
阿里云服务器架构解析:从X86到高性能计算、异构计算等不同架构性能、适用场景及选择参考
当我们准备选购阿里云服务器时,阿里云提供了X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等多种架构,每种架构都有其独特的特点和适用场景。本文将详细解析这些架构的区别,探讨它们的主要特点和适用场景,并为用户提供选择云服务器架构的全面指南。
621 18
|
4月前
|
算法 前端开发 定位技术
地铁站内导航系统解决方案:技术架构与核心功能设计解析
本文旨在分享一套地铁站内导航系统技术方案,通过蓝牙Beacon技术与AI算法的结合,解决传统导航定位不准确、路径规划不合理等问题,提升乘客出行体验,同时为地铁运营商提供数据支持与增值服务。 如需获取校地铁站内智能导航系统方案文档可前往文章最下方获取,如有项目合作及技术交流欢迎私信我们哦~
229 1
|
5月前
|
存储 人工智能 并行计算
2025年阿里云弹性裸金属服务器架构解析与资源配置方案
🚀 核心特性与技术创新:提供100%物理机性能输出,支持NVIDIA A100/V100 GPU直通,无虚拟化层损耗。网络与存储优化,400万PPS吞吐量,ESSD云盘IOPS达100万,RDMA延迟<5μs。全球部署覆盖华北、华东、华南及海外节点,支持跨地域负载均衡。典型应用场景包括AI训练、科学计算等,支持分布式训练和并行计算框架。弹性裸金属服务器+OSS存储+高速网络综合部署,满足高性能计算需求。
|
7月前
|
运维 监控 持续交付
微服务架构解析:跨越传统架构的技术革命
微服务架构(Microservices Architecture)是一种软件架构风格,它将一个大型的单体应用拆分为多个小而独立的服务,每个服务都可以独立开发、部署和扩展。
1757 36
微服务架构解析:跨越传统架构的技术革命
|
6月前
|
XML Java 开发者
Spring底层架构核心概念解析
理解 Spring 框架的核心概念对于开发和维护 Spring 应用程序至关重要。IOC 和 AOP 是其两个关键特性,通过依赖注入和面向切面编程实现了高效的模块化和松耦合设计。Spring 容器管理着 Beans 的生命周期和配置,而核心模块为各种应用场景提供了丰富的功能支持。通过全面掌握这些核心概念,开发者可以更加高效地利用 Spring 框架开发企业级应用。
182 18
|
5月前
|
传感器 监控 安全
智慧工地云平台的技术架构解析:微服务+Spring Cloud如何支撑海量数据?
慧工地解决方案依托AI、物联网和BIM技术,实现对施工现场的全方位、立体化管理。通过规范施工、减少安全隐患、节省人力、降低运营成本,提升工地管理的安全性、效率和精益度。该方案适用于大型建筑、基础设施、房地产开发等场景,具备微服务架构、大数据与AI分析、物联网设备联网、多端协同等创新点,推动建筑行业向数字化、智能化转型。未来将融合5G、区块链等技术,助力智慧城市建设。
227 0

热门文章

最新文章

推荐镜像

更多
  • DNS