摩尔定律失效后,AI如何保持快速发展?

简介: 重新设计芯片的想法看起来可能会让人工智能走的更远!

更多深度文章,请关注云计算频道:
https://yq.aliyun.com/cloud
  本月初,谷歌CEO Sundar Pichai在跟开发者分享从他的机器学习实验室得到的结果时,他表现的非常兴奋。因为他们实验室的研究人员,已经找到了自动化生成机器学习软件的方法。并且他们也发现,这个方法很容易就能部署到新的情景和行业内。

  不过,该项目在AI研究领域内名声大噪的另外一个原因就是,它成功的证明了在机器学习领域竞争,计算资源(计算能力)才是取胜的关键。
screenshot

  一篇来自谷歌的论文研究表明,在这个项目中,他们同时使用了800多个功能强大并且非常昂贵的图形处理器(GPU)。GPU的使用,对近期机器学习能力的提高起到了至关重要的作用。他们告诉《麻省理工科技评论》,这个项目已经持续使用这些芯片两周。仅仅这一个研究项目就消耗了大量的资源,即使像谷歌这样有钱的公司,也难以承受如此大的开销。

  对于无法访问大型GPU集群的研究人员来说,做这样的实验就意味着要有大量的研究经费。如果从亚马逊的云计算服务中心租用800个GPU,一周就需要大约12万美金的开销。

  比起运行深度学习的软件,训练深度学习软件所消耗的资源更加庞大。计算能力对于现在的机器学习来说,算是一个瓶颈。斯坦福大学的副教授Reza Zadeh如是说,同时Reza Zadeh还是Matroid的创始人兼首席执行官,Matroid是一家利用软件帮助企业来识别视频中人和车的公司。
screenshot

  人工智能的发展需要在计算能力不断的有所突破,但是不幸的是计算行业赖以生存了50年的两大定律却正在渐渐的走向灭亡,一个是“摩尔定律”,它曾预测每两年,相同面积的芯片上的晶体管数量将会翻倍;另外一个是Dennard缩放比例定律,它指出当晶体管变小时,它们的功耗如何按比例缩小。

  今天,这两个昔日辉煌的定律都不在适用了。英特尔已经减缓了引入更小,更密集的晶体管的步伐。(详见:Moore's Law is dead.Now What?)在20世纪中期,随着晶体管的不断变小,晶体管的使用效率就很难得到提升,所以能耗成为了最头疼的问题。

  押注人工智能的一个好消息是,图形芯片目前已经成功的进入到人们的视野中。最近,全球领先图形芯片英伟达的首席执行官黄仁勋向公众展示了一个图表,该图表显示,英伟达芯片的性能在以指数级加速,相比之下通用处理器CPU的性能提升已经减缓。

  致力于将新技术商业化的微软NEXT的工程师Doug Burger表示,传统软件和机器学习软件之间也有类似的差距(暗指CPU和GPU之间的差距)。他说:“目前,通用软件的性能已经到了一个停滞期,但是人工智能却还在迅猛的发展。”

  Doug Burger还认为,这种趋势还会继续下去。工程师们会让GPU变得越来越强大,因为GPU可以更专业的处理图形或者机器学习中所需要的数学问题。

  同样的理念还出现在Doug Burger在微软领导的一个项目中,它通过使用被称作是FPGAs的可重构芯片为人工智能软件提供了更加强大的计算能力。它同样激励着一些初创公司和巨头,比如说谷歌——创造一种特殊的芯片去驱动机器学习。(详见:google reveals a powerful NEW Ai Chip and Supercomputer)。

  从长远角度来看,要使人工智能更加强大,计算机芯片必须更加彻底的改变。开发特定的芯片是一个主要的方向,现实情况已经证明,这些芯片确实能够使计算机效率更高,并且不会损害机器学习软件输出结果的准确性。(详见:Why a Chip That’s Bad at Math Can Help Computers Tackle Harder Problems)。

  芯片的设计直接复制生物结构也可能会成为未来的一个新的方向,IBM和其他公司已经构建出使用尖峰电流进行计算的芯片原型,其计算过程类似于人类神经元的激发过程。(详见:Thinking in Silicon

  Burger说“一些简单的动物,能够用很少的能量实现的功能就超过了今天我们机器人,不得不承认的是,在这些行为中一定存在很多提高性能和效率机制等待着被我们发现。”

  毕竟人工智能这条路才真正的开始,我们可以从人类的神经网络中获取算法模型。或许我们也可以从人类的神经网络中获取更多的启发。在人工智能这条道路上,我们还需要花费很长的时间。

作者介绍:
Tom Simonite 麻省理工技术评论在旧金山总编辑。曾经在剑桥大学伦敦帝国学院和新科学家杂志工作过五年。
本文由北邮@爱可可-爱生活推荐,阿里云云栖社区翻译。
文章原标题《How AI Can Keep Accelerating After Moore’s Law》
作者:Tom Simonite,译者:袁虎,审阅:我是主题曲哥哥
文章为简译,更为详细的内容,请查看原文

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
机器学习/深度学习 人工智能 芯片
摩尔定律失效后,AI如何保持快速发展?
重新设计芯片的想法看起来可能会让人工智能走的更远!
2527 0
|
10天前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
144 11
|
10天前
|
数据采集 人工智能 前端开发
Playwright与AI智能体的网页爬虫创新应用
厌倦重复测试与低效爬虫?本课程带您掌握Playwright自动化工具,并融合AI大模型构建智能体,实现网页自主分析、决策与数据提取,完成从脚本执行到智能架构的能力跃升。
|
10天前
|
人工智能 运维 安全
聚焦 AI 应用基础设施,云栖大会 Serverless AI 全回顾
2025 年 9 月 26 日,为期三天的云栖大会在杭州云栖小镇圆满闭幕。随着大模型技术的飞速发展,我们正从云原生时代迈向一个全新的 AI 原生应用时代。为了解决企业在 AI 应用落地中面临的高成本、高复杂度和高风险等核心挑战,阿里云基于函数计算 FC 发布一系列重磅服务。本文将对云栖大会期间 Serverless+AI 基础设施相关内容进行全面总结。
|
12天前
|
设计模式 机器学习/深度学习 人工智能
AI-Native (AI原生)图解+秒懂: 什么是 AI-Native 应用(AI原生应用)?如何设计一个 AI原生应用?
AI-Native (AI原生)图解+秒懂: 什么是 AI-Native 应用(AI原生应用)?如何设计一个 AI原生应用?
|
12天前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
135 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
|
15天前
|
边缘计算 人工智能 算法
AI在智慧能源管理中的边缘计算应用
AI在智慧能源管理中的边缘计算应用
85 13
|
15天前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
15天前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
224 12
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。

热门文章

最新文章