Java技术面试-Kafka

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: Java技术面试-Kafka
1. activeMq与kafka的区别


  • 吞吐量


(1)activeMq较低,磁盘随机读写  ;


(2)kafka较高吞吐量,内部采用消息的批量处理,数据的存储和获取是本地磁盘顺序批量读写 ;


  • 游标位置


(1)activeMq amq来管理,无法读取历史数据;


(2)kafka客户端自己管理,不乐意甚至重新读一遍都可以


  • HA机制(高可用)


(1)activeMq,主从机制, 主动复制,竞争锁的方式来选举;


(2)kafka: 和hadoop系列产品一样,分布式,由zk管理


-容错


(1)Kafka每个Partition的数据都会复制到几台服务器上。当某个Broker故障失效时,ZooKeeper服务将通知生产者和消费者,生产者和消费者转而使用其它Broker。


说到底,做为kafka的消费方,能感受到最大的不同还是在于几个:


(1)吞吐量确实非常高;


(2)可以重读历史数据;


(3)但是也有一些缺点:概念上比较复杂,相对于AMQ只需要知道ip和队列名你就能获得数据,Kafka使用起来非常繁琐


2. Kafka 的缺点


  • 重复消息


Kafka 只保证每个消息至少会送达一次,虽然几率很小,但一条消息有可能会被送达多次。


  • 消息乱序


虽然一个Partition 内部的消息是保证有序的,但是如果一个Topic 有多个Partition,Partition 之间的消息送达不保证有序。


  • 复杂性


Kafka需要zookeeper 集群的支持,Topic通常需要人工来创建,部署和维护较一般消息队列成本更高


kafka重复消费问题的说明:


kafka在理论上的确存在重复消费的问题,比清结算平台,对接交易数据时,通过数据库主键来控制重复数据入库,而在消息中心正常情况下,也不会有消息重复,及时在偶尔在部署服务的时候,会有重复消费,也是可以接受的。


消息中心采用的同步提交:手动提交offset,防止业务处理时间过长,offset未及时提交导致重复消费


3. Kafka的基本概念(摘录)


  • (1)Broker:消息中间件处理结点,一个Kafka节点就是一个broker,多个broker可以组成一个Kafka集群。


  • (2)Topic:一类消息,例如page view日志、click日志等都可以以topic的形式存在,Kafka集群能够同时负责多个topic的分发。


  • (3)Partition:topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。


  • (4)Segment:partition物理上由多个segment组成。


  • (5)offset:每个partition都由一系列有序的、不可变的消息组成,这些消息被连续的追加到partition中。partition中的每个消息都有一个连续的序列号叫做offset,用于partition唯一标识一条消息.


4. Kafka消费端的常用参数

Properties props = new Properties();
//zk服务器的地址  xxxx:2181
props.put("zookeeper.connect", zookeeper);
//组的名称,区别于其他group否则会接收不到数据
props.put("group.id", groupId);
props.put("zookeeper.session.timeout.ms", "8000");
props.put("zookeeper.connection.timeout.ms", "20000");
props.put("zookeeper.sync.time.ms", "2000");
props.put("auto.commit.interval.ms", "5000");
props.put("rebalance.max.retries", "5");
props.put("rebalance.backoff.ms", "60000");
props.put("auto.commit.enable", "true");
//重点参数,是否每次都从offset最前面开始读起
props.put("auto.offset.reset", "smallest");


相关文章
|
2天前
|
JSON 前端开发 JavaScript
java-ajax技术详解!!!
本文介绍了Ajax技术及其工作原理,包括其核心XMLHttpRequest对象的属性和方法。Ajax通过异步通信技术,实现在不重新加载整个页面的情况下更新部分网页内容。文章还详细描述了使用原生JavaScript实现Ajax的基本步骤,以及利用jQuery简化Ajax操作的方法。最后,介绍了JSON作为轻量级数据交换格式在Ajax应用中的使用,包括Java中JSON与对象的相互转换。
8 1
|
2天前
|
消息中间件 缓存 Java
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
零拷贝技术 Zero-Copy 是指计算机执行操作时,可以直接从源(如文件或网络套接字)将数据传输到目标缓冲区, 而不需要 CPU 先将数据从某处内存复制到另一个特定区域,从而减少上下文切换以及 CPU 的拷贝时间。
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
|
9天前
|
SQL 监控 Java
技术前沿:Java连接池技术的最新发展与应用
本文探讨了Java连接池技术的最新发展与应用,包括高性能与低延迟、智能化管理和监控、扩展性与兼容性等方面。同时,结合最佳实践,介绍了如何选择合适的连接池库、合理配置参数、使用监控工具及优化数据库操作,为开发者提供了一份详尽的技术指南。
20 7
|
11天前
|
移动开发 前端开发 Java
过时的Java技术盘点:避免在这些领域浪费时间
【10月更文挑战第14天】 在快速发展的Java生态系统中,新技术层出不穷,而一些旧技术则逐渐被淘汰。对于Java开发者来说,了解哪些技术已经过时是至关重要的,这可以帮助他们避免在这些领域浪费时间,并将精力集中在更有前景的技术上。本文将盘点一些已经或即将被淘汰的Java技术,为开发者提供指导。
44 7
|
7天前
|
SQL Java 数据库连接
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率。本文介绍了连接池的工作原理、优势及实现方法,并提供了HikariCP的示例代码。
20 3
|
7天前
|
SQL 监控 Java
Java连接池技术的最新发展,包括高性能与低延迟、智能化管理与监控、扩展性与兼容性等方面
本文探讨了Java连接池技术的最新发展,包括高性能与低延迟、智能化管理与监控、扩展性与兼容性等方面。同时,结合最佳实践,介绍了如何选择合适的连接池库、合理配置参数、使用监控工具及优化数据库操作,以实现高效稳定的数据库访问。示例代码展示了如何使用HikariCP连接池。
7 2
|
9天前
|
Java 数据库连接 数据库
优化之路:Java连接池技术助力数据库性能飞跃
在Java应用开发中,数据库操作常成为性能瓶颈。频繁的数据库连接建立和断开增加了系统开销,导致性能下降。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接,显著减少连接开销,提升系统性能。文章详细介绍了连接池的优势、选择标准、使用方法及优化策略,帮助开发者实现数据库性能的飞跃。
18 4
|
7天前
|
Java 数据库连接 数据库
深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能
在Java应用开发中,数据库操作常成为性能瓶颈。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能。文章介绍了连接池的优势、选择和使用方法,以及优化配置的技巧。
11 1
|
7天前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
22 1
|
9天前
|
SQL Java 数据库连接
打破瓶颈:利用Java连接池技术提升数据库访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,避免了频繁的连接建立和断开,显著提升了数据库访问效率。常见的连接池库包括HikariCP、C3P0和DBCP,它们提供了丰富的配置选项和强大的功能,帮助优化应用性能。
27 2