机器学习(三)使用Python和R语言从头开始理解和编写神经网络(二)

简介: 机器学习(三)使用Python和R语言从头开始理解和编写神经网络(二)

神经网络方法的可视化步骤


我们将重复上述步骤,可视化输入,权重,偏差,输出,误差矩阵,以了解神经网络(MLP)的工作方法。

  • 注意:
  • 对于良好的可视化图像,我有2或3个位置的十进制小数位。
  • 黄色填充的细胞代表当前活动细胞
  • 橙色单元格表示用于填充当前单元格值的输入
  • 步骤1:读取输入和输出

    1.png

     Step 1


  • 步骤2:用随机值初始化权重和偏差(有初始化权重和偏差的方法,但是现在用随机值初始化)

    2.png
    Step 2


  • 步骤3:计算隐层输入:

    hidden_layer_input= matrix_dot_product(X,wh) + bh


3.png

Step 3


  • 步骤4:对隐藏的线性输入进行非线性变换

    hiddenlayer_activations = sigmoid(hidden_layer_input)


4.png

Step 4


  • 步骤5:在输出层执行隐层激活的线性和非线性变换

    output_layer_input = matrix_dot_product (hiddenlayer_activations * wout ) + bout

    output = sigmoid(output_layer_input)

5.png

Step 5


  • 步骤6:计算输出层的误差(E)梯度

    E = y-output

6.png

Step 6


  • 步骤7:计算输出和隐藏层的斜率

    Slope_output_layer= derivatives_sigmoid(output)

    Slope_hidden_layer = derivatives_sigmoid(hiddenlayer_activations)

7.png

py26-10.png


  • 步骤8:计算输出层的增量

    d_output = E * slope_output_layer*lr

8.png

py26-11.png


  • 步骤9:计算隐藏层的误差

    Error_at_hidden_layer = matrix_dot_product(d_output, wout.Transpose)

9.png

py26-12.png


  • 步骤10:计算隐藏层的增量

    d_hiddenlayer = Error_at_hidden_layer * slope_hidden_layer

10.png

py26-13.png


  • 步骤11:更新输出和隐藏层的权重

    wout = wout + matrix_dot_product(hiddenlayer_activations.Transpose, d_output)*learning_rate

    wh = wh+ matrix_dot_product(X.Transpose,d_hiddenlayer)*learning_rate

11.png

py26-14.png


  • 步骤12:更新输出和隐藏层的偏置量

    bh = bh + sum(d_hiddenlayer, axis=0) * learning_rate

    bout = bout + sum(d_output, axis=0)*learning_rate

12.png

py26-15.png


以上,您可以看到仍然有一个很好的误差而不接近于实际目标值,因为我们已经完成了一次训练迭代。 如果我们多次训练模型,那么这将是一个非常接近的实际结果。 我完成了数千次迭代,我的结果接近实际的目标值([[0.98032096] [0.96845624] [0.04532167]])。


使用Numpy(Python)实现NN



import numpy as np
#Input array
X=np.array([[1,0,1,0],[1,0,1,1],[0,1,0,1]])
#Output
y=np.array([[1],[1],[0]])
#Sigmoid Function
def sigmoid (x):
    return 1/(1 + np.exp(-x))
#Derivative of Sigmoid Function
def derivatives_sigmoid(x):
    return x * (1 - x)
#Variable initialization
epoch=5000 #Setting training iterations
lr=0.1 #Setting learning rate
inputlayer_neurons = X.shape[1] #number of features in data set
hiddenlayer_neurons = 3 #number of hidden layers neurons
output_neurons = 1 #number of neurons at output layer
#weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))
for i in range(epoch):
    #Forward Propogation
    hidden_layer_input1=np.dot(X,wh)
    hidden_layer_input=hidden_layer_input1 + bh
    hiddenlayer_activations = sigmoid(hidden_layer_input)
    output_layer_input1=np.dot(hiddenlayer_activations,wout)
    output_layer_input= output_layer_input1+ bout
    output = sigmoid(output_layer_input)
    #Backpropagation
    E = y-output
    slope_output_layer = derivatives_sigmoid(output)
    slope_hidden_layer = derivatives_sigmoid(hiddenlayer_activations)
    d_output = E * slope_output_layer
    Error_at_hidden_layer = d_output.dot(wout.T)
    d_hiddenlayer = Error_at_hidden_layer * slope_hidden_layer
    wout += hiddenlayer_activations.T.dot(d_output) *lr
    bout += np.sum(d_output, axis=0,keepdims=True) *lr
    wh += X.T.dot(d_hiddenlayer) *lr
    bh += np.sum(d_hiddenlayer, axis=0,keepdims=True) *lr
print("output of Forward Propogation:\n{}".format(output))
print("wout,bout of Backpropagation:\n{},\n{}".format(wout,bout))


output of Forward Propogation:
[[ 0.98497471]
 [ 0.96956956]
 [ 0.0416628 ]]
wout,bout of Backpropagation:
[[ 3.34342103]
 [-1.97924327]
 [ 3.90636787]],
[[-1.71231223]]


在R中实现NN



# input matrix
X=matrix(c(1,0,1,0,1,0,1,1,0,1,0,1),nrow = 3, ncol=4,byrow = TRUE)
# output matrix
Y=matrix(c(1,1,0),byrow=FALSE)
#sigmoid function
sigmoid<-function(x){
1/(1+exp(-x))
}
# derivative of sigmoid function
derivatives_sigmoid<-function(x){
x*(1-x)
}
# variable initialization
epoch=5000
lr=0.1
inputlayer_neurons=ncol(X)
hiddenlayer_neurons=3
output_neurons=1
#weight and bias initialization
wh=matrix( rnorm(inputlayer_neurons*hiddenlayer_neurons,mean=0,sd=1), inputlayer_neurons, hiddenlayer_neurons)
bias_in=runif(hiddenlayer_neurons)
bias_in_temp=rep(bias_in, nrow(X))
bh=matrix(bias_in_temp, nrow = nrow(X), byrow = FALSE)
wout=matrix( rnorm(hiddenlayer_neurons*output_neurons,mean=0,sd=1), hiddenlayer_neurons, output_neurons)
bias_out=runif(output_neurons)
bias_out_temp=rep(bias_out,nrow(X))
bout=matrix(bias_out_temp,nrow = nrow(X),byrow = FALSE)
# forward propagation
for(i in 1:epoch){
hidden_layer_input1= X%*%wh
hidden_layer_input=hidden_layer_input1+bh
hidden_layer_activations=sigmoid(hidden_layer_input)
output_layer_input1=hidden_layer_activations%*%wout
output_layer_input=output_layer_input1+bout
output= sigmoid(output_layer_input)
# Back Propagation
E=Y-output
slope_output_layer=derivatives_sigmoid(output)
slope_hidden_layer=derivatives_sigmoid(hidden_layer_activations)
d_output=E*slope_output_layer
Error_at_hidden_layer=d_output%*%t(wout)
d_hiddenlayer=Error_at_hidden_layer*slope_hidden_layer
wout= wout + (t(hidden_layer_activations)%*%d_output)*lr
bout= bout+rowSums(d_output)*lr
wh = wh +(t(X)%*%d_hiddenlayer)*lr
bh = bh + rowSums(d_hiddenlayer)*lr
}
output


[可选]反向传播算法的数学理解


设Wi为输入层和隐层之间的权重。 Wh是隐层和输出层之间的权重。

现在,h =σ(u)=σ(WiX),即h是u的函数,u是Wi和X的函数。这里我们将我们的函数表示为σ

Y =σ(u')=σ(Whh),即Y是u'的函数,u'是Wh和h的函数。

我们将不断参考上述方程来计算偏导数。

我们主要感兴趣的是找到两个项:∂E/∂Wi和∂E/∂Wh即改变输入和隐藏层之间权重的误差变化,改变隐层和输出之间权重的变化 层。

但是为了计算这两个偏导数,我们将需要使用部分微分的链规则,因为E是Y的函数,Y是u'的函数,u'是Wi的函数。

让我们把这个属性很好的用于计算梯度。

`∂E/∂Wh = (∂E/∂Y).( ∂Y/∂u’).( ∂u’/∂Wh), ……..(1)

We know E is of the form E=(Y-t)2/2.

So, (∂E/∂Y)= (Y-t)`

现在,σ是一个S形函数,并具有σ(1-σ)形式的有意义的区分。 我敦促读者在他们身边进行验证。

所以, (∂Y/∂u’)= ∂( σ(u’)/ ∂u’= σ(u’)(1- σ(u’)).

但是, σ(u’)=Y, So,

(∂Y/∂u’)=Y(1-Y)

现在得出, ( ∂u’/∂Wh)= ∂( Whh)/ ∂Wh = h

取代等式(1)中的值我们得到,

∂E/∂Wh = (Y-t). Y(1-Y).h

所以,现在我们已经计算了隐层和输出层之间的梯度。 现在是计算输入层和隐藏层之间的梯度的时候了。

∂E/∂Wi =(∂ E/∂ h). (∂h/∂u).( ∂u/∂Wi)

但是,(∂ E/∂ h) = (∂E/∂Y).( ∂Y/∂u’).( ∂u’/∂h). 在上述方程中替换这个值得到:

∂E/∂Wi =[(∂E/∂Y).( ∂Y/∂u’).( ∂u’/∂h)]. (∂h/∂u).( ∂u/∂Wi)……………(2)

那么,首先计算隐层和输出层之间的梯度有什么好处?

如等式(2)所示,我们已经计算出∂E/∂Y和∂Y/∂u'节省了空间和计算时间。 我们会在一段时间内知道为什么这个算法称为反向传播算法。

让我们计算公式(2)中的未知导数。

∂u’/∂h = ∂(Whh)/ ∂h = Wh

∂h/∂u = ∂( σ(u)/ ∂u= σ(u)(1- σ(u))

但是, σ(u)=h, So,

(∂Y/∂u)=h(1-h)

得出, ∂u/∂Wi = ∂(WiX)/ ∂Wi = X

取代等式(2)中的所有这些值,我们得到:

∂E/∂Wi = [(Y-t). Y(1-Y).Wh].h(1-h).X

所以现在,由于我们已经计算了两个梯度,所以权重可以更新为:

Wh = Wh + η . ∂E/∂Wh

Wi = Wi + η . ∂E/∂Wi

其中η是学习率。

所以回到这个问题:为什么这个算法叫做反向传播算法?

原因是:如果您注意到∂E/∂Wh和∂E/∂Wi的最终形式,您将看到术语(Yt)即输出错误,这是我们开始的,然后将其传播回输入 层重量更新。

那么,这个数学在哪里适合代码?

hiddenlayer_activations= H

E = Y-t

Slope_output_layer = Y(1-Y)

lr =η

slope_hidden_layer = h(1-h)

wout = Wh

现在,您可以轻松地将代码与数学联系起来。


结束语


本文主要从头开始构建神经网络,并了解其基本概念。 我希望你现在可以理解神经网络的工作,如前向和后向传播的工作,优化算法(全批次和随机梯度下降),如何更新权重和偏差,Excel中每个步骤的可视化以及建立在python和R的代码.

因此,在即将到来的文章中,我将解释在Python中使用神经网络的应用,并解决与以下问题相关的现实生活中的挑战:

  1. 计算机视觉
  2. 言语
  3. 自然语言处理

我在写这篇文章的时候感到很愉快,并希望从你的反馈中学习。 你觉得这篇文章有用吗? 感谢您的建议/意见。 请随时通过以下意见提出您的问题。


(转载请注明来源)
相关文章
|
3天前
|
Unix API Python
python提供了两个级别访问的网络服务
【7月更文挑战第23天】python提供了两个级别访问的网络服务
18 7
|
2天前
|
网络协议 开发者 Python
深度探索Python Socket编程:从理论到实践,进阶篇带你领略网络编程的魅力!
【7月更文挑战第25天】在网络编程中, Python Socket编程因灵活性强而广受青睐。本文采用问答形式深入探讨其进阶技巧。**问题一**: Socket编程基于TCP/IP,通过创建Socket对象实现通信,支持客户端和服务器间的数据交换。**问题二**: 提升并发处理能力的方法包括多线程(适用于I/O密集型任务)、多进程(绕过GIL限制)和异步IO(asyncio)。**问题三**: 提供了一个使用asyncio库实现的异步Socket服务器示例,展示如何接收及响应客户端消息。通过这些内容,希望能激发读者对网络编程的兴趣并引导进一步探索。
11 4
|
1天前
|
网络协议 Python
网络世界的建筑师:Python Socket编程基础与进阶,构建你的网络帝国!
【7月更文挑战第26天】在网络的数字宇宙中,Python Socket编程是开启网络世界大门的钥匙。本指南将引领你从基础到实战,成为网络世界的建筑师。
6 2
|
2天前
|
开发者 Python
Python Socket编程:不只是基础,更有进阶秘籍,让你的网络应用飞起来!
【7月更文挑战第25天】在网络应用蓬勃发展的数字时代,Python凭借其简洁的语法和强大的库支持成为开发高效应用的首选。本文通过实时聊天室案例,介绍了Python Socket编程的基础与进阶技巧,包括服务器与客户端的建立、数据交换等基础篇内容,以及使用多线程和异步IO提升性能的进阶篇。基础示例展示了服务器端监听连接请求、接收转发消息,客户端连接服务器并收发消息的过程。进阶部分讨论了如何利用Python的`threading`模块和`asyncio`库来处理多客户端连接,提高应用的并发处理能力和响应速度。掌握这些技能,能使开发者在网络编程领域更加游刃有余,构建出高性能的应用程序。
9 3
|
17天前
|
机器学习/深度学习 数据采集 算法
Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战
Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战
60 19
|
13天前
|
网络协议 安全 Shell
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
|
16天前
|
存储 算法 Python
Python图论实战:从零基础到精通DFS与BFS遍历,轻松玩转复杂网络结构
【7月更文挑战第11天】图论在数据科学中扮演关键角色,用于解决复杂网络问题。Python因其易用性和库支持成为实现图算法的首选。本文通过问答形式介绍DFS和BFS,图是节点和边的数据结构,遍历用于搜索和分析。Python中图可表示为邻接表,DFS用递归遍历,BFS借助队列。DFS适用于深度探索,BFS则用于最短路径。提供的代码示例帮助理解如何在Python中应用这两种遍历算法。开始探索图论,解锁更多技术可能!
42 6
|
12天前
|
机器学习/深度学习 人工智能 算法
|
17天前
|
机器学习/深度学习 数据采集 监控
Python基于BP神经网络算法实现家用热水器用户行为分析与事件识别
Python基于BP神经网络算法实现家用热水器用户行为分析与事件识别
|
1天前
|
消息中间件 网络协议 网络安全
解锁Python Socket新姿势,进阶篇带你玩转高级网络通信技巧!
【7月更文挑战第26天】掌握Python Socket后,探索网络通信高级技巧。本指南深化Socket编程理解,包括非阻塞I/O以提升并发性能(示例使用`select`),SSL/TLS加密确保数据安全,以及介绍高级网络协议库如HTTP、WebSocket和ZeroMQ,简化复杂应用开发。持续学习,成为网络通信专家!
3 0

热门文章

最新文章