图像中二维码的检测和定位

简介: 图像中二维码的检测和定位

二维码



二维条码/二维码(2-dimensional bar code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的黑白相间的图形记录数据符号信息的;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。


image.png

QR-Code-Overview.jpeg


定位图案


  • Position Detection Pattern是定位图案,用于标记二维码的矩形大小。这三个定位图案有白边叫Separators for Postion Detection Patterns。之所以三个而不是四个意思就是三个就可以标识一个矩形了。
  • Timing Patterns也是用于定位的。原因是二维码有40种尺寸,尺寸过大了后需要有根标准线,不然扫描的时候可能会扫歪了。
  • Alignment Patterns 只有Version 2以上(包括Version2)的二维码需要这个东东,同样是为了定位用的。


通过查找定位图案,可以实现二维码扫描的检测和定位。


检测和定位的步骤



先对图片进行灰度处理:

image = image.getImage().convert2Gray().getProcessor();
ByteProcessor src = ((ByteProcessor)image);


再对图像做二值化处理:

Threshold t = new Threshold();
t.process(src, Threshold.THRESH_OTSU, Threshold.METHOD_THRESH_BINARY_INV, 20);


然后是对y、x方向进行形态学上的开操作

MorphOpen mOpen = new MorphOpen();
        byte[] data = new byte[width*height];
        System.arraycopy(src.getGray(), 0, data, 0, data.length);
        ByteProcessor copy = new ByteProcessor(data, width, height);
        mOpen.process(src, new Size(n1, n2)); // Y方向开操作
        src.getImage().resetBitmap();
        mOpen.process(copy, new Size(n2, n1)); // X方向开操作
        CV4JImage cv4JImage = new CV4JImage(width,height);
        ((ByteProcessor)cv4JImage.getProcessor()).putGray(copy.getGray());


所谓开操作是指先腐蚀后膨胀的操作。在之前的文章二值图像分析:案例实战(文本分离+硬币计数)曾经介绍过开操作的用途。

import com.cv4j.core.datamodel.ByteProcessor;
import com.cv4j.core.datamodel.Size;
public class MorphOpen {
    /**
     * in order to remove litter noise block, erode + dilate operator
     *
     * @param binary
     * @param structureElement
     */
    public void process(ByteProcessor binary, Size structureElement) {
        FastErode erode = new FastErode();
        FastDilate dilate = new FastDilate();
        erode.process(binary, structureElement, 1);
        dilate.process(binary, structureElement, 1);
    }
}


接下来是标记联通区域,找到二维码的三个特征区域,也就是定位图案。

// 联通组件查找连接区域
        ConnectedAreaLabel ccal = new ConnectedAreaLabel();
        ccal.setFilterNoise(true);
        List<Rect> rectList = new ArrayList<>();
        int[] labelMask = new int[width*height];
        ccal.process(src, labelMask, rectList, true);
        float w = 0;
        float h = 0;
        float rate = 0;
        List<Rect> qrRects = new ArrayList<>();
        for(Rect roi : rectList) {
            if (roi == null) continue;
            if((roi.width > width/4 || roi .width < 10) || (roi.height < 10 || roi.height > height/4))
                continue;
            if((roi.x < 10 || roi.x > width -10)|| (roi.y < 10 || roi.y > height-10))
                continue;
            w = roi.width;
            h = roi.height;
            rate = (float)Math.abs(w / h  - 1.0);
            if(rate < 0.05 && isRect(roi, labelMask, width, height,true)) {
                qrRects.add(roi);
            }
        }


最后,通过定位图案能够找到二维码所在的区域,如果找不到会返回空的矩形。否则返回一个Rect,它表示找到的二维码所在图像中的区域。


我们可以对该区域进行标识,下面是算法的具体使用,找到图像中的二维码之后,用红色的边框框起来。

CV4JImage cv4JImage = new CV4JImage(bitmap);
        QRCodeScanner qrCodeScanner = new QRCodeScanner();
        Rect rect = qrCodeScanner.findQRCodeBounding(cv4JImage.getProcessor(),1,6);
        Bitmap bm = bitmap.copy(Bitmap.Config.ARGB_8888, true);
        Canvas canvas = new Canvas(bm);
        Paint paint = new Paint();
        paint.setColor(Color.RED);
        paint.setStrokeWidth((float) 10.0);
        paint.setStyle(Paint.Style.STROKE);
        android.graphics.Rect androidRect = new android.graphics.Rect(rect.x-20,rect.y-20,rect.br().x+20,rect.br().y+20);
        canvas.drawRect(androidRect,paint);
        image.setImageBitmap(bm);


image.png

定位图片中的二维码区域.png


image.png

定位有创意的二维码.png


image.png

截图微信的二维码.png


对于iPhone截屏之后的图片,该图片尺寸是1242 × 2208。在没有对图片做任何缩放处理的情况下,使用该算法进行定位二维码的区域也是ok的。


image.png

大图中的二维码.png


当然,对于大图如果适当地降采样处理或者缩放的话,算法速度会更快。


写在最后



彩色二维码和小程序的圆形二维码目前能够检测吗?


暂时不能。因为图像在二值化之后,彩色的部分像素点会变成白色的像素点,导致二维码轮廓不完整,最终导致无法实现二值分析。我们会在完成模版匹配的功能之后,继续优化算法完善该功能,加上检测彩色和圆形二维码的能力。


算法的源码位于cv4jQRCodeScanner中,该算法不能识别二维码的字符串,只能找到二维码的区域,如果需要识别二维码还是需要使用Google Zxing。


总结



cv4jgloomyfish和我一起开发的图像处理库,纯java实现,目前还处于早期的版本。

文章中的算法是对二值图像分析的综合运用,使用它再结合Google的ZXing能够提高二维码的识别率。当然,由于它是pure java实现的,稍作改动能够用它来判断出某张图片中是否包含有二维码。

相关文章
|
机器学习/深度学习 并行计算 API
【GPU】CUDA是什么?以及学习路线图!
【GPU】CUDA是什么?以及学习路线图!
4234 0
|
计算机视觉
微信开源二维码检测识别-实时检测识别-opencv-Python
微信开源二维码检测识别-实时检测识别-opencv-Python
|
传感器 机器学习/深度学习 人工智能
苏黎世理工最新!maplab2.0:模块化的多模态建图定位框架
将多传感器模态和深度学习集成到同时定位和mapping(SLAM)系统中是当前研究的重要领域。多模态是在具有挑战性的环境中实现鲁棒性和具有不同传感器设置的异构多机器人系统的互操作性的一块垫脚石。借助maplab 2.0,这个多功能的开源平台,可帮助开发、测试新模块和功能,并将其集成到一个成熟的SLAM系统中。
苏黎世理工最新!maplab2.0:模块化的多模态建图定位框架
|
机器学习/深度学习 Java 开发工具
【能力展现】魔改ZXING源码实现商业级DM码检测能力
【能力展现】魔改ZXING源码实现商业级DM码检测能力
547 1
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
2978 2
|
10月前
|
IDE 开发工具
【开发IDE升级】如何对IDEA版本进行升级
本文介绍了如何将 IntelliJ IDEA Ultimate 从 2020.2.2 版本升级到 2022.3.2 版本。主要内容包括准备工作、卸载旧版本和安装新版本的步骤。首先,从官网下载所需版本并备份旧版配置;接着,通过 Uninstall.exe 卸载旧版,保留配置和插件;最后,安装新版并完成激活。详细的操作步骤和截图帮助用户顺利完成升级过程。
10882 1
【开发IDE升级】如何对IDEA版本进行升级
|
10月前
|
存储 弹性计算 数据管理
阿里云对象存储OSS收费标准:存储、流量和请求等多个计费项详解
阿里云对象存储OSS提供多样化的计费模式,涵盖存储、流量、请求等多项费用。存储费用方面,按量付费标准型为0.09元/GB/月,包年包月则有9元40GB等多种选择。流量费用仅对公网出方向收费,价格区间从0.25至0.50元/GB不等,支持按量付费与流量包抵扣两种方式。更多详情及精准报价,欢迎访问阿里云OSS官方页面。
6617 1
|
11月前
|
存储 机器学习/深度学习 人工智能
二维码生成原理和解码原理
二维码(Quick Response Code,简称QR码)是一种广泛使用的二维条形码技术。二维码能有效地存储和传递信息,广泛应用于商品追溯、支付、广告等多个领域。二维码的主要特点是信息存储量大、读取速度快、容错能力强等。
1428 2