活体检测眨眼、张嘴、点头、摇头动作一网打尽:人脸面部活体检测系统【含Python源码+PyqtUI界面+原理详解】

简介: 活体检测眨眼、张嘴、点头、摇头动作一网打尽:人脸面部活体检测系统【含Python源码+PyqtUI界面+原理详解】

前言

目前,人脸识别技术在我们日常生活应用十分广泛,几乎随处都能会接触到,比如手机的人脸识别解锁、人脸支付、门禁闸机的人脸识别出入等等。但随之而来也会遇到一定的问题,如:人脸识别只能检测目标人脸是否和预留人脸数据特征是否一致,却不能检测是否是真的活人。因此各种欺骗手段也开始露出水面,如何判断被检测对象是否是真的活人,而不是照片、视频甚至是人皮面具,是一个亟待解决的问题,此时,活体检测走上了时代的舞台。

活体检测的主要目的就是判断捕捉到的人脸是真实人脸,还是伪造的人脸攻击(如:彩色纸张打印人脸图,电子设备屏幕中的人脸数字图像 以及 面具 等)。

常见的活体检测主要有以下3种方式:

【1】配合式检测

活体检测认证过程中,系统要求用户配合完成指定的的工作,比如眨眼、抬头、张嘴等动作,检测目标是否为真实的活题。

【2】rgb检测

此类检测方式,适用于阻挡用图片或者视频截图来欺骗人脸识别的攻击行为,通过识别图片上的细微特征来识别是否是真实活体,此类检测方式可分为在线和离线两种版本。

【3】3D结构光检测

活体检测过程中,通过3D结构光的三维成像原理,构成人脸三维特征的比对,判别检测目标是否为真实的活体,以阻挡图片、视频截图、面具的欺骗。

其中配合式的活体检测方式在生活中也十分常见。本文主要就是采用检测人脸的张嘴、眨眼、点头及 摇头这四个动作来进行人脸活体检测。

博主基于dlib库通过人脸关键点的距离变化,开发了一款简易的人脸面部活体检测系统,可以通过视频摄像头2种方式进行人脸面部活体检测,并且展示识别结果。可以识别眨眼张嘴点头摇头这4种常见表情动作,感兴趣的小伙伴可以自己试试。

觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!

软件界面如下图:

一、软件核心功能介绍及效果演示

软件主要功能包括以下几个部分:

1. 可对视频或者摄像头中的人脸进行眨眼、张嘴、点头、摇头动作检测;
2. 可以统计眨眼、张嘴、点头、摇头每个动作的次数;
3. 可单独进行眨眼、张嘴、点头、摇头的测试检测,如果检测成功,会显示测试通过字样;
4. 可以通过显示面部轮廓线复选框,来选择是否进行人脸轮廓显示,默认是显示的。

(1)视频检测演示

点击打开视频按钮,选择需要检测的视频即可,操作演示如下:

(2)面部动作次数统计

该系统会自动统计眨眼、张嘴、点头、摇头每个动作的次数,点击充值按钮,会将统计次数重置为0。

演示如下:

(3)单个动作测试功能

通过点击单选按钮眨眼测试张嘴测试,摇头测试,点头测试来分别检测每个动作,如果检测到了相应动作,则会显示对应动作测试通过字样。操作演示如下:

二、人脸面部活体检测的基本原理

1.基本原理

本人脸面部活体检测系统主要是基于人脸关键点检测之后,关键点之间的距离变化来进行的。

首先使用dlib库的shape_predictor_68_face_landmarks模型,检测人脸的68个关键点,关键点如下所示:

人脸各个部位点分布如下:

脸颊线[1,17]

左眼眉毛[18,22]

右眼眉毛[23,27]

鼻梁[28,31]

鼻子[32,36]

左眼[37,42]

右眼[43,48]

上嘴唇外边缘[49,55]

上嘴唇内边缘[66,68]

下嘴唇外边缘[56,60]

下嘴唇内边缘[61,65]

2.眨眼检测

基本原理:基于眼睛长宽比EAR( Eye Aspect Ratio)的变化来判断人眼是否有眨眼动作。当人眼睁开时,EAR在某个值上下波动,当人眼闭合时,EAR迅速下降,理论上会接近于零。所以我们可以认为当EAR低于某个阈值时,眼睛处于闭合状态。为检测眨眼次数,需要设置同一次眨眼的连续帧数。眨眼速度比较快,一般1~3帧就完成了眨眼动作。两个阈值都要根据实际情况设置。

**判断标准:**我们分别计算左右两只眼睛的纵横比并取平均值,作为眨眼的指标,经过多次测试后,选取0.3作为阈值。在连续检测到两真EAR小于阈值,即眼睛一睁一闭时,我们将记录为一次眨眼。

注:阈值可能由于摄像头远近或人脸形状等因素的影响,可能需要根据实际情况进行微调。

眼睛长宽比EAR距离计算代码如下:

def EAR(eye):
    # 默认二范数:求特征值,然后求最大特征值得算术平方根
    A = np.linalg.norm(eye[1] - eye[5])
    B = np.linalg.norm(eye[2] - eye[4])
    C = np.linalg.norm(eye[0] - eye[3])
    return (A + B) / (2.0 * C)

眨眼判断核心代码如下:

# 提取左眼和右眼坐标,然后使用该坐标计算两只眼睛的眼睛纵横比
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
ear = EAR(leftEye) + EAR(rightEye) / 2.0
# 判断眼睛纵横比是否低于眨眼阈值
if ear < EAR_THRESH:
    count_eye += 1
else:
    # 检测到一次闭眼
    if count_eye >= EYE_close:
        total += 1
    count_eye = 0

3.张嘴检测

基本原理: 类似眨眼检测类似,计算嘴巴的长宽比MAR(Mouth Aspect Ratio),当MAR大于设定的阈值时,认为张开了嘴巴。

嘴巴长宽比MAR距离计算代码如下:

def MAR(mouth):
    # 默认二范数:求特征值,然后求最大特征值得算术平方根
    A = np.linalg.norm(mouth[2] - mouth[10])  # 51, 59(人脸68个关键点)
    B = np.linalg.norm(mouth[4] - mouth[8])  # 53, 57
    C = np.linalg.norm(mouth[0] - mouth[6])  # 49, 55
    return (A + B) / (2.0 * C)

张嘴判断核心代码如下:

Mouth = shape[mStart:mEnd]
mar = MAR(Mouth)
 # 判断嘴唇纵横比是否高于张嘴阈值,如果是,则增加张嘴帧计数器
 if mar > MAR_THRESH:
     COUNTER_MOUTH += 1
 else:
     # 如果张嘴帧计数器不等于0,则增加张嘴的总次数
     if COUNTER_MOUTH >= 2:
         TOTAL_MOUTH += 1
     COUNTER_MOUTH = 0

4.摇头与点头检测

同理对于摇头与点头,我们只需计算左右两侧脸颊宽度变化,以及鼻子到下巴的距离,即可判断是点头与摇头动作。

摇头判断核心代码如下:

# 左脸大于右脸
if face_left1 >= face_right1 + Config.FACE_DIFF and face_left2 >= face_right2 + Config.FACE_DIFF:
    distance_left += 1
# 右脸大于左脸
if face_right1 >= face_left1 + Config.FACE_DIFF and face_right2 >= face_left2 + Config.FACE_DIFF:
    distance_right += 1
# 左脸大于右脸,并且右脸大于左脸,判定摇头
if distance_left != 0 and distance_right != 0:
    TOTAL_FACE += 1
    distance_right = 0
    distance_left = 0

以上便是关于人脸面部活体检测的基本原理介绍与代码介绍。针对以上内容,博主基于pythonPyqt5开发了一个可视化的人脸面部活体检测系统软件,能够更加直观的看到人脸各个动作的检测情况。即第二部分软件演示部分,该系统能够很好的对视频或者摄像头中的人脸进行眨眼、张嘴、点头、摇头动作检测。

相关文章
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
81 3
|
2月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
76 3
|
11天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
65 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能质量检测与控制
使用Python实现深度学习模型:智能质量检测与控制 【10月更文挑战第8天】
313 62
使用Python实现深度学习模型:智能质量检测与控制
|
24天前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
32 5
|
1月前
|
缓存 开发者 Python
深入探索Python中的装饰器:原理、应用与最佳实践####
本文作为技术性深度解析文章,旨在揭开Python装饰器背后的神秘面纱,通过剖析其工作原理、多样化的应用场景及实践中的最佳策略,为中高级Python开发者提供一份详尽的指南。不同于常规摘要的概括性介绍,本文摘要将直接以一段精炼的代码示例开篇,随后简要阐述文章的核心价值与读者预期收获,引领读者快速进入装饰器的世界。 ```python # 示例:一个简单的日志记录装饰器 def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling {func.__name__} with args: {a
43 2
|
2月前
|
JSON 开发工具 git
基于Python和pygame的植物大战僵尸游戏设计源码
本项目是基于Python和pygame开发的植物大战僵尸游戏,包含125个文件,如PNG图像、Python源码等,提供丰富的游戏开发学习素材。游戏设计源码可从提供的链接下载。关键词:Python游戏开发、pygame、植物大战僵尸、源码分享。
|
2月前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
128 4
|
2月前
|
搜索推荐 Python
快速排序的 Python 实践:从原理到优化,打造你的排序利器!
本文介绍了 Python 中的快速排序算法,从基本原理、实现代码到优化方法进行了详细探讨。快速排序采用分治策略,通过选择基准元素将数组分为两部分,递归排序。文章还对比了快速排序与冒泡排序的性能,展示了优化前后快速排序的差异。通过这些分析,帮助读者理解快速排序的优势及优化的重要性,从而在实际应用中选择合适的排序算法和优化策略,提升程序性能。
52 1
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
使用Python实现智能食品质量检测的深度学习模型
使用Python实现智能食品质量检测的深度学习模型
171 1
下一篇
开通oss服务