Redis 高可用篇:你管这叫主从架构数据同步原理? (下)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 接上文。

基于长连接的命令传播


65 哥:完成全量同步后,正常运行过程如何同步呢?


当主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,使用长连接的目的就是避免频繁建立连接导致的开销。


在命令传播阶段,除了发送写命令,主从节点还维持着心跳机制:PING 和 REPLCONF ACK。


主->从:PING


每隔指定的时间,主节点会向从节点发送 PING 命令,这个 PING 命令的作用,主要是为了让从节点进行超时判断。


从->主:REPLCONF ACK


在命令传播阶段,从服务器默认会以每秒一次的频率,向主服务器发送命令:


REPLCONF ACK <replication_offset>


其中 replication_offset 是从服务器当前的复制偏移量。发送 REPLCONF ACK 命令对于主从服务器有三个作用:


  1. 检测主从服务器的网络连接状态。


  1. 辅助实现 min-slaves 选项。


  1. 检测命令丢失, 从节点发送了自身的 slave_replication_offset,主节点会用自己的 master_replication_offset 对比,如果从节点数据缺失,主节点会从 repl_backlog_buffer缓冲区中找到并推送缺失的数据。


注意,offset 和 repl_backlog_buffer 缓冲区,不仅可以用于部分复制,也可以用于处理命令丢失等情形;区别在于前者是在断线重连后进行的,而后者是在主从节点没有断线的情况下进行的。


如何确定执行全量同步还是部分同步?


在 Redis 2.8 及以后,从节点可以发送 psync 命令请求同步数据,此时根据主从节点当前状态的不同,同步方式可能是全量复制部分复制。本文以 Redis 2.8 及之后的版本为例。


关键就是 psync的执行:


image.png


  1. 从节点根据当前状态,发送psync命令给 master:


  • 如果从节点从未执行过 replicaof ,则从节点发送 psync ? -1,向主节点发送全量复制请求;


  • 如果从节点之前执行过 replicaof 则发送 psync <runID> <offset>, runID 是上次复制保存的主节点 runID,offset 是上次复制截至时从节点保存的复制偏移量。


  1. 主节点根据接受到的psync命令和当前服务器状态,决定执行全量复制还是部分复制:


  • runID 与从节点发送的 runID 相同,且从节点发送的 slave_repl_offset 之后的数据在 repl_backlog_buffer 缓冲区中都存在,则回复 CONTINUE,表示将进行部分复制,从节点等待主节点发送其缺少的数据即可;


  • runID 与从节点发送的 runID 不同,或者从节点发送的 slave_repl_offset 之后的数据已不在主节点的 repl_backlog_buffer 缓冲区中 (在队列中被挤出了),则回复从节点 FULLRESYNC <runid> <offset>,表示要进行全量复制,其中 runID 表示主节点当前的 runID,offset 表示主节点当前的 offset,从节点保存这两个值,以备使用。


一个从库如果和主库断连时间过长,造成它在主库 repl_backlog_buffer 的 slave_repl_offset 位置上的数据已经被覆盖掉了,此时从库和主库间将进行全量复制。


总结下


每个从库会记录自己的 slave_repl_offset,每个从库的复制进度也不一定相同。

在和主库重连进行恢复时,从库会通过 psync 命令把自己记录的 slave_repl_offset 发给主库,主库会根据从库各自的复制进度,来决定这个从库可以进行增量复制,还是全量复制。


replication buffer 和 repl_backlog


  1. replication buffer 对应于每个 slave,通过 config set client-output-buffer-limit slave 设置。


  1. repl_backlog_buffer 是一个环形缓冲区,整个 master 进程中只会存在一个,所有的 slave 公用。repl_backlog 的大小通过 repl-backlog-size 参数设置,默认大小是 1M,其大小可以根据每秒产生的命令、(master 执行 rdb bgsave) +( master 发送 rdb 到 slave) + (slave load rdb 文件)时间之和来估算积压缓冲区的大小,repl-backlog-size 值不小于这两者的乘积。


总的来说,replication buffer 是主从库在进行全量复制时,主库上用于和从库连接的客户端的 buffer,而 repl_backlog_buffer 是为了支持从库增量复制,主库上用于持续保存写操作的一块专用 buffer。


repl_backlog_buffer 是一块专用 buffer,在 Redis 服务器启动后,开始一直接收写操作命令,这是所有从库共享的。主库和从库会各自记录自己的复制进度,所以,不同的从库在进行恢复时,会把自己的复制进度(slave_repl_offset)发给主库,主库就可以和它独立同步。


如图所示:


image.png


4. 主从应用问题


4.1 读写分离的问题


数据过期问题


65 哥:主从复制的场景下,从节点会删除过期数据么?


这个问题问得好,为了主从节点的数据一致性,从节点不会主动删除数据。我们知道 Redis 有两种删除策略:


  1. 惰性删除:当客户端查询对应的数据时,Redis 判断该数据是否过期,过期则删除。


  1. 定期删除:Redis 通过定时任务删除过期数据。


65 哥:那客户端通过从节点读取数据会不会读取到过期数据?


Redis 3.2 开始,通过从节点读取数据时,先判断数据是否已过期。如果过期则不返回客户端,并且删除数据。


4.2 单机内存大小限制


如果 Redis 单机内存达到 10GB,一个从节点的同步时间在几分钟的级别;如果从节点较多,恢复的速度会更慢。如果系统的读负载很高,而这段时间从节点无法提供服务,会对系统造成很大的压力。


如果数据量过大,全量复制阶段主节点 fork + 保存 RDB 文件耗时过大,从节点长时间接收不到数据触发超时,主从节点的数据同步同样可能陷入全量复制->超时导致复制中断->重连->全量复制->超时导致复制中断……的循环。


此外,主节点单机内存除了绝对量不能太大,其占用主机内存的比例也不应过大:最好只使用 50% - 65% 的内存,留下 30%-45% 的内存用于执行 bgsave 命令和创建复制缓冲区等。


总结


  1. 主从复制的作用:AOF 和 RDB 二进制文件保证了宕机快速恢复数据,尽可能的防止丢失数据。但是宕机后依然无法提供服务,所以便演化出主从架构、读写分离。


  1. 主从复制原理:连接建立阶段、数据同步阶段、命令传播阶段;数据同步阶段又分为 全量复制和部分复制;命令传播阶段主从节点之间有 PING 和 REPLCONF ACK 命令互相进行心跳检测。


  1. 主从复制虽然解决或缓解了数据冗余、故障恢复、读负载均衡等问题,但其缺陷仍很明显:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制;这些问题的解决,需要哨兵和集群的帮助,我将在后面的文章中介绍,欢迎关注。
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
监控 关系型数据库 MySQL
深入了解MySQL主从复制:构建高效稳定的数据同步架构
深入了解MySQL主从复制:构建高效稳定的数据同步架构
120 1
|
10天前
|
缓存 前端开发 安全
数据同步原理
数据同步原理
41 10
数据同步原理
|
3天前
|
SQL Java 数据库连接
Mybatis架构原理和机制,图文详解版,超详细!
MyBatis 是 Java 生态中非常著名的一款 ORM 框架,在一线互联网大厂中应用广泛,Mybatis已经成为了一个必会框架。本文详细解析了MyBatis的架构原理与机制,帮助读者全面提升对MyBatis的理解和应用能力。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
Mybatis架构原理和机制,图文详解版,超详细!
|
7天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
17天前
|
开发者 容器
Flutter&鸿蒙next 布局架构原理详解
本文详细介绍了 Flutter 中的主要布局方式,包括 Row、Column、Stack、Container、ListView 和 GridView 等布局组件的架构原理及使用场景。通过了解这些布局 Widget 的基本概念、关键属性和布局原理,开发者可以更高效地构建复杂的用户界面。此外,文章还提供了布局优化技巧,帮助提升应用性能。
78 4
|
17天前
|
存储 Dart 前端开发
flutter鸿蒙版本mvvm架构思想原理
在Flutter中实现MVVM架构,旨在将UI与业务逻辑分离,提升代码可维护性和可读性。本文介绍了MVVM的整体架构,包括Model、View和ViewModel的职责,以及各文件的详细实现。通过`main.dart`、`CounterViewModel.dart`、`MyHomePage.dart`和`Model.dart`的具体代码,展示了如何使用Provider进行状态管理,实现数据绑定和响应式设计。MVVM架构的分离关注点、数据绑定和可维护性特点,使得开发更加高效和整洁。
146 3
|
29天前
|
容器
Flutter&鸿蒙next 布局架构原理详解
Flutter&鸿蒙next 布局架构原理详解
|
1月前
|
前端开发 Java 应用服务中间件
21张图解析Tomcat运行原理与架构全貌
【10月更文挑战第2天】本文通过21张图详细解析了Tomcat的运行原理与架构。Tomcat作为Java Web开发中最流行的Web服务器之一,其架构设计精妙。文章首先介绍了Tomcat的基本组件:Connector(连接器)负责网络通信,Container(容器)处理业务逻辑。连接器内部包括EndPoint、Processor和Adapter等组件,分别处理通信、协议解析和请求封装。容器采用多级结构(Engine、Host、Context、Wrapper),并通过Mapper组件进行请求路由。文章还探讨了Tomcat的生命周期管理、启动与停止机制,并通过源码分析展示了请求处理流程。
|
1月前
|
存储 分布式计算 druid
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
52 3
|
1月前
|
消息中间件 分布式计算 druid
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
36 2

热门文章

最新文章