Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【9月更文挑战第1天】Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值

Canal,作为阿里巴巴开源的一款高性能数据同步系统,其核心价值在于基于MySQL的增量日志Binlog解析,提供低延迟、可靠的数据增量订阅和消费能力。本文将从Canal的原理、配置到实战应用进行全面解析,并附上示例代码,帮助读者深入理解并高效使用这一数据同步神器。

Canal原理
Canal的核心原理在于模拟MySQL slave的交互协议,伪装成MySQL slave向MySQL master发送dump协议,从而接收并解析master的binary log。这一机制最早应用于阿里巴巴解决杭州与美国双机房之间的数据同步问题,现已成为众多互联网企业实现数据同步的重要工具。

MySQL master在数据变更时会将变更写入binary log,Canal通过模拟slave发送dump请求,从master接收binary log,并解析这些日志,进而实现数据的增量同步。Canal的架构包含server和instance两个主要部分,一个server代表一个Canal运行实例,对应一个JVM;一个instance对应一个数据队列,包含eventParser、eventSink、eventStore和metaManager等组件。

Canal配置
Canal的配置相对直观,主要包括server和instance两个层面的配置。以下是一个基本的配置示例:

Server配置:
properties

canal.properties

canal.admin.port=11110
canal.port=11111
canal.metrics.pull.port=11112
canal.destinations=example # 指定实例名
Instance配置:
properties

instance.properties

canal.instance.mysql.slaveId=10
canal.instance.master.address=127.0.0.1:3306
canal.instance.dbUsername=root
canal.instance.dbPassword=yourpassword
canal.instance.connectionCharset=UTF-8
canal.instance.filter.regex=... # 匹配所有数据库和表
配置完成后,可以通过Canal提供的启动脚本启动服务:

bash
sh bin/startup.sh
实战应用
Canal广泛应用于数据库镜像、实时备份、索引构建和实时维护等业务场景。以下是一个简单的实战示例,展示如何通过Canal捕获MySQL的数据变更并实时同步到其他系统。

首先,确保MySQL开启了binlog并正确配置:

bash

my.cnf

[mysqld]
server-id=1
log_bin=mysql-bin
binlog-format=ROW
然后,配置Canal实例并启动。Canal启动后,会自动从MySQL的binlog中捕获数据变更,并通过eventSink进行过滤、加工和分发。

在实际应用中,可以结合Canal提供的客户端API,实现数据的消费和处理。例如,可以使用Canal Client订阅Canal Instance的增量数据,并在接收到数据后执行相应的业务逻辑,如更新缓存、写入Kafka等。

总结
Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值。通过本文的深入解析和实战示例,相信读者已经对Canal的原理、配置和应用有了全面的了解。在实际应用中,建议根据具体业务需求灵活配置Canal,并结合其他工具和技术,构建高效、稳定的数据同步体系。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
5月前
|
关系型数据库 MySQL OLAP
实时计算 Flink版产品使用合集之可以支持 MySQL 数据源的增量同步到 Hudi 吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
存储 关系型数据库 MySQL
【TiDB原理与实战详解】5、BR 物理备份恢复与Binlog 数据同步~学不会? 不存在的!
BR(Backup & Restore)是 TiDB 分布式备份恢复的命令行工具,适用于大数据量场景,支持常规备份恢复及大规模数据迁移。BR 通过向各 TiKV 节点下发命令执行备份或恢复操作,生成 SST 文件存储数据信息与 `backupmeta` 文件存储元信息。推荐部署配置包括在 PD 节点部署 BR 工具,使用万兆网卡等。本文介绍 BR 的工作原理、部署配置、使用限制及多种备份恢复方式,如全量备份、单库/单表备份、过滤备份及增量备份等。
|
3月前
|
存储 数据库
zookeeper 集群环境搭建及集群选举及数据同步机制
zookeeper 集群环境搭建及集群选举及数据同步机制
55 2
|
2月前
|
canal 关系型数据库 MySQL
"揭秘阿里数据同步黑科技Canal:从原理到实战,手把手教你玩转MySQL数据秒级同步,让你的数据处理能力瞬间飙升,成为技术界的新晋网红!"
【8月更文挑战第18天】Canal是一款由阿里巴巴开源的高性能数据同步系统,它通过解析MySQL的增量日志(Binlog),提供低延迟、可靠的数据订阅和消费功能。Canal模拟MySQL Slave与Master间的交互协议来接收并解析Binary Log,支持数据的增量同步。配置简单直观,包括Server和Instance两层配置。在实战中,Canal可用于数据库镜像、实时备份等多种场景,通过集成Canal Client可实现数据的消费和处理,如更新缓存或写入消息队列。
385 0
|
4月前
|
分布式计算 大数据 关系型数据库
MaxCompute产品使用问题之如何实现MySQL的实时增量同步
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4月前
|
canal 关系型数据库 MySQL
蓝易云 - 详解canal同步MySQL增量数据到ES
以上就是使用Canal同步MySQL增量数据到Elasticsearch的基本步骤。在实际操作中,可能还需要根据具体的业务需求和环境进行一些额外的配置和优化。
103 2
|
2月前
|
SQL DataWorks 关系型数据库
DataWorks操作报错合集之如何处理数据同步时(mysql->hive)报:Render instance failed
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
2月前
|
关系型数据库 MySQL 数据库
【MySQL】手把手教你MySQL数据同步
【MySQL】手把手教你MySQL数据同步
|
2月前
|
SQL 关系型数据库 MySQL
“震撼揭秘!Flink CDC如何轻松实现SQL Server到MySQL的实时数据同步?一招在手,数据无忧!”
【8月更文挑战第7天】随着大数据技术的发展,实时数据同步变得至关重要。Apache Flink作为高性能流处理框架,在实时数据处理领域扮演着核心角色。Flink CDC(Change Data Capture)组件的加入,使得数据同步更为高效。本文介绍如何使用Flink CDC实现从SQL Server到MySQL的实时数据同步,并提供示例代码。首先确保SQL Server启用了CDC功能,接着在Flink环境中引入相关连接器。通过定义源表与目标表,并执行简单的`INSERT INTO SELECT`语句,即可完成数据同步。
142 1
|
2月前
|
SQL canal 关系型数据库
(二十四)全解MySQL之主从篇:死磕主从复制中数据同步原理与优化
兜兜转转,经过《全解MySQL专栏》前面二十多篇的内容讲解后,基本对MySQL单机模式下的各方面进阶知识做了详细阐述,同时在前面的《分库分表概念篇》、《分库分表隐患篇》两章中也首次提到了数据库的一些高可用方案,但前两章大多属于方法论,并未涵盖真正的实操过程。接下来的内容,会以目前这章作为分割点,开启MySQL高可用方案的落地实践分享的新章程!
796 1
下一篇
无影云桌面