大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(正在更新!)

章节内容

上节我们完成了如下的内容:


Flink DataStream Transformation

FlatMap Window Aggregations Reduce 等等等函数

Sink

Flink 的 Sink 是指数据流处理过程中最终输出数据的组件。在 Apache Flink 中,数据流从 Source 读取后经过一系列的转换操作,最后会被写入到 Sink 中。Sink 是 Flink 流式处理应用的终点,决定了处理后的数据如何保存或传输。


基本概念

Flink 的 Sink 是用来将流处理的数据写入外部存储系统的,比如数据库、文件系统、消息队列等。Sink 接口提供了一种灵活的方式来定义数据的输出格式和存储目标。Flink 提供了多个内置的 Sink 连接器,用户也可以根据需求自定义 Sink。


常见类型

Flink 提供了多种内置的 Sink,可以将数据输出到多种不同的系统中。以下是一些常见的 Flink Sink:


File Sink:将数据输出到文件系统,支持多种文件格式,如文本文件、CSV、Parquet 等。

Kafka Sink:将数据输出到 Kafka 主题,用于构建流式数据管道。

Elasticsearch Sink:将数据写入 Elasticsearch 索引,适用于实时数据搜索和分析。

JDBC Sink:将数据写入关系型数据库,如 MySQL、PostgreSQL 等。

HDFS Sink:将数据存储在 Hadoop 分布式文件系统中,适用于大规模数据的长期存储。

Cassandra Sink:将数据写入 Cassandra 数据库,适用于大规模的 NoSQL 数据存储

配置与使用

要在 Flink 应用中使用 Sink,需要通过 DataStream 的 addSink 方法来配置和添加 Sink。例如,将数据写入 Kafka 的简单配置如下:

DataStream<String> dataStream = // 数据处理逻辑
dataStream.addSink(new FlinkKafkaProducer<>(
    "localhost:9092",         // Kafka broker 地址
    "output-topic",           // 输出的 Kafka 主题
    new SimpleStringSchema()   // 数据序列化格式
));

同样,配置 JDBC Sink 的方式如下:

dataStream.addSink(JdbcSink.sink(
    "INSERT INTO my_table (column1, column2) VALUES (?, ?)",
    (statement, value) -> {
        statement.setString(1, value.f0);
        statement.setInt(2, value.f1);
    },
    JdbcExecutionOptions.builder()
        .withBatchSize(1000)
        .withBatchIntervalMs(200)
        .build(),
    new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
        .withUrl("jdbc:mysql://localhost:3306/mydb")
        .withDriverName("com.mysql.jdbc.Driver")
        .withUsername("user")
        .withPassword("password")
        .build()
));

自定义 Sink

除了使用内置的 Sink,Flink 还允许开发者实现自定义 Sink。通过实现 SinkFunction 接口或扩展 RichSinkFunction 类,开发者可以定义自己所需的 Sink。自定义 Sink 通常用于需要特殊处理或集成尚不支持的外部系统。


例如,自定义一个简单的控制台打印 Sink:


public class PrintSinkFunction<T> extends RichSinkFunction<T> {
    @Override
    public void invoke(T value, Context context) {
        System.out.println(value);
    }
}

Sink 的容错机制

Flink 提供了精确一次 (Exactly-Once) 和至少一次 (At-Least-Once) 的容错语义,具体取决于 Sink 的类型及其配置。例如,Kafka Sink 通常支持精确一次语义,而某些文件系统 Sink 可能只支持至少一次语义。通过启用 Flink 的 Checkpointing 机制,Sink 可以在发生故障时从最近的检查点恢复,从而保证数据的一致性。


Sink 的并行度

Flink 的 Sink 通常是并行的,默认情况下与上游操作的并行度一致。用户可以通过 setParallelism 方法来手动调整 Sink 的并行度。注意,对于一些 Sink,如文件系统 Sink,并行度越高,生成的文件数也越多。


生命周期

Flink 的 Sink 在执行时会经历以下几个阶段:


打开 (open):初始化资源,如数据库连接、文件句柄等。

写入 (invoke):将每一条数据写入目标存储系统。

关闭 (close):关闭资源,确保数据完整写入和资源的正确释放。

简单示例

以下是一个将处理后的数据流写入文本文件的完整示例:

DataStream<String> dataStream = // 数据处理逻辑
StreamingFileSink<String> sink = StreamingFileSink
    .forRowFormat(new Path("/output/path"), new SimpleStringEncoder<String>("UTF-8"))
    .build();

dataStream.addSink(sink);

案例1:数据写入Redis

添加依赖

<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-redis_2.11</artifactId>
  <version>1.1.5</version>
</dependency>

编写代码

消费Kafka 计算之后 写入到 Redis中。

Source(Kafka) -> Sink(Redis)

package icu.wzk;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;

import java.util.Properties;

public class StreamFromKafka {

    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 配置信息
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", "h121.wzk.icu:9092");

        // Kafka
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(
                "flink_test",
                new SimpleStringSchema(),
                properties
        );
        DataStreamSource<String> data = env.getJavaEnv().addSource(consumer);

        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = data
                .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                        String[] words = value.split(" ");
                        for (String word: words) {
                            out.collect(new Tuple2<>(word, 1));
                        }
                    }
                });
        SingleOutputStreamOperator<Tuple2<String, Integer>> result = wordAndOne
                .keyBy(new KeySelector<Tuple2<String, Integer>, Object>() {
                    @Override
                    public Object getKey(Tuple2<String, Integer> value) throws Exception {
                        return value.f0;
                    }
                })
                .sum(1);
        result.print();
        env.execute("StreamFromKafka");
    }

}

启动Kafka

启动Redis

运行代码

写入数据

查看结果

目录
相关文章
|
3月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
9月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
143 3
|
4月前
|
NoSQL Ubuntu 网络安全
在 Ubuntu 20.04 上安装和配置 Redis
在 Ubuntu 20.04 上安装和配置 Redis 的步骤如下:首先更新系统包,然后通过 `apt` 安装 Redis。安装后,启用并启动 Redis 服务,检查其运行状态。可选配置包括修改绑定 IP、端口等,并确保防火墙设置允许外部访问。最后,使用 `redis-cli` 测试 Redis 功能,如设置和获取键值对。
150 1
|
6月前
|
存储 监控 NoSQL
NoSQL与Redis配置与优化
通过合理配置和优化Redis,可以显著提高其性能和可靠性。选择合适的数据结构、优化内存使用、合理设置持久化策略、使用Pipeline批量执行命令、以及采用分布式集群方案,都是提升Redis性能的重要手段。同时,定期监控和维护Redis实例,及时调整配置,能够确保系统的稳定运行。希望本文对您在Redis的配置与优化方面有所帮助。
132 23
|
6月前
|
存储 监控 NoSQL
NoSQL与Redis配置与优化
通过合理配置和优化Redis,可以显著提高其性能和可靠性。选择合适的数据结构、优化内存使用、合理设置持久化策略、使用Pipeline批量执行命令、以及采用分布式集群方案,都是提升Redis性能的重要手段。
112 7
|
9月前
|
数据采集 数据可视化 大数据
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
这篇文章介绍了如何使用Python中的matplotlib和numpy库来创建箱线图,以检测和处理数据集中的异常值。
201 1
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
|
8月前
|
存储 消息中间件 NoSQL
Redis数据结构:List类型全面解析
Redis数据结构——List类型全面解析:存储多个有序的字符串,列表中每个字符串成为元素 Eelement,最多可以存储 2^32-1 个元素。可对列表两端插入(push)和弹出(pop)、获取指定范围的元素列表等,常见命令。 底层数据结构:3.2版本之前,底层采用**压缩链表ZipList**和**双向链表LinkedList**;3.2版本之后,底层数据结构为**快速链表QuickList** 列表是一种比较灵活的数据结构,可以充当栈、队列、阻塞队列,在实际开发中有很多应用场景。
|
8月前
|
存储 SQL 关系型数据库
2024Mysql And Redis基础与进阶操作系列(1)作者——LJS[含MySQL的下载、安装、配置详解步骤及报错对应解决方法]
Mysql And Redis基础与进阶操作系列(1)之[MySQL的下载、安装、配置详解步骤及报错对应解决方法]
|
9月前
|
机器学习/深度学习 XML 分布式计算
大数据的概念
【10月更文挑战第16天】
319 4
|
9月前
|
消息中间件 存储 监控
redis 的List类型 实现 排行榜
【10月更文挑战第8天】
111 2

热门文章

最新文章