Redis经典问题:数据不一致

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 小米探讨了Redis数据不一致问题及其原因,包括缓存更新失败和rehash异常。提出了解决方案,如重试策略、缩短缓存时间、优化写入策略、监控报警、一致性验证、缓存分层和数据回滚机制。通过这些方法可提升应用的稳定性和性能。

大家好,我是小米,今天我想和大家聊一聊Redis的一个经典问题——数据不一致。在使用Redis的过程中,你是否曾遇到过这样的问题?缓存和数据库中的数据不一致,可能导致应用程序的功能异常。下面,我将详细介绍数据不一致的原因,以及一些有效的解决方案。

什么是数据不一致

数据不一致是指缓存中的数据和数据库中的数据存在差异。这种问题通常出现在缓存系统与数据库之间的同步过程中。当缓存中的数据与数据库中的数据不匹配时,会导致应用程序读取错误或过时的数据,从而影响应用的稳定性和性能。

具体来说,数据不一致可能由以下情况引起:

  • 缓存更新失败:在缓存机器的带宽被打满,或者机房网络出现波动时,缓存更新可能失败,新数据无法写入缓存,从而导致缓存和数据库的数据不一致。
  • 缓存rehash时的异常:当Redis进行rehash操作时,某个缓存机器可能会出现反复异常,多次上下线,导致更新请求多次rehash。这样,一份数据可能存在于多个节点上,每次rehash只更新某个节点,导致一些缓存节点产生脏数据。

解决方案

针对Redis中的数据不一致问题,我们可以采取多种措施来确保缓存和数据库的数据一致性。以下是一些有效的解决方案:

  • 重试策略:在缓存更新失败后,可以采用重试机制来确保数据的正确写入。将重试失败的key写入消息队列(MQ),待缓存访问恢复后,重新尝试删除这些key,以保证缓存的一致性。在这些key再次被查询时,数据会重新从数据库加载,从而确保数据的正确性。
  • 缩短缓存时间:将缓存过期时间设置得较短,可以有效避免数据不一致的问题。通过频繁刷新缓存数据,确保缓存中的数据与数据库中的数据同步。这样,缓存中的数据更容易过期并重新加载,从而保持数据的最终一致性。
  • 数据写入策略优化:在数据写入缓存时,可以优化写入策略,比如使用分布式锁或乐观锁,确保写入操作的原子性和一致性。这样可以避免在并发情况下出现数据写入冲突或不一致的问题。
  • 监控和报警机制:建立监控和报警机制,对缓存系统的性能和数据一致性进行实时监控。通过监控可以及时发现和修复数据不一致的问题,确保系统的稳定性和可靠性。
  • 数据一致性验证:定期对缓存和数据库中的数据进行一致性验证。通过比较数据的哈希值或其他校验方式,可以发现数据不一致的情况,并及时采取措施进行修复。
  • 缓存分层策略:使用缓存分层策略,将缓存分为多个层次,如热数据缓存、冷数据缓存等。通过分层存储和访问数据,可以有效降低缓存中的数据不一致问题,同时提高缓存的利用效率和系统性能。
  • 数据回滚和恢复机制:在数据不一致的情况下,确保有可靠的回滚和恢复机制。通过记录数据的历史状态,能够在数据出现不一致时快速恢复到一致状态,确保应用的稳定运行。

END

数据不一致是Redis使用中常见的问题之一,但通过合理的策略和措施,我们可以有效地解决这一问题。无论是通过重试策略、缩短缓存时间,还是采用缓存分层策略,我们都可以确保数据的最终一致性,进而提高应用程序的稳定性和性能。希望今天的分享对大家有所帮助,让我们一起打造更加高效、稳定的应用程序吧!

如果你还有其他问题,欢迎在评论区与我交流分享。感谢你的阅读,我们下次再见!

【更多精彩内容,欢迎关注小米的微信公众号“软件求生”】

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
5天前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
|
6月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
645 16
|
7月前
|
监控 NoSQL Java
场景题:百万数据插入Redis有哪些实现方案?
场景题:百万数据插入Redis有哪些实现方案?
99 1
场景题:百万数据插入Redis有哪些实现方案?
|
2月前
|
缓存 NoSQL 前端开发
Redis应用—2.在列表数据里的应用
本文介绍了基于数据库和缓存双写的分享贴功能设计,包括:基于数据库 + 缓存双写的分享贴功能、查询分享贴列表缓存时的延迟构建、分页列表惰性缓存方案、用户分享贴列表数据按页缓存实现精准过期控制、用户分享贴列表的分页缓存异步更新、数据库与缓存的分页数据一致性方案、热门用户分享贴列表的分页缓存失效时消除并发线程串行等待锁的影响。总结:该设计通过合理的缓存策略和异步处理机制,有效提升了系统性能,降低了内存占用,并确保了数据的一致性和高可用性。
Redis应用—2.在列表数据里的应用
|
2月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
|
2月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
2月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
|
2月前
|
NoSQL Redis
Redis的数据持久化策略有哪些 ?
Redis 提供了两种方式,实现数据的持久化到硬盘。 1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。 2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作 RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )
|
3月前
|
缓存 NoSQL 关系型数据库
Redis应用—1.在用户数据里的应用
本文主要介绍了社区电商的业务闭环及Redis缓存架构中遇到的典型生产问题及其解决方案。通过介绍的设计和优化,社区电商平台能够在高并发读取和少量写入的情况下,保持高性能和数据一致性。
Redis应用—1.在用户数据里的应用
|
2月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
1. 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断 a. 如果未过期,返回数据 b. 发现已过期,删除,返回nil 2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。默认情况下 Redis 定期检查的频率是每秒扫描 10 次,用于定期清除过期键。当然此值还可以通过配置文件进行设置,在 redis.conf 中修改配置“hz”

相关产品

  • 云数据库 Tair(兼容 Redis)