Redis经典问题:数据并发竞争

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 在大流量系统中,数据并发竞争可能导致系统性能下降和崩溃。为解决此问题,可以采取加写回操作和互斥锁,确保数据一致性并减少写操作对缓存的影响。另外,保持缓存数据多个备份能降低并发竞争概率。通过实例展示了如何在电商网站中应用这些策略,从而提高系统稳定性和性能。关注微信公众号“软件求生”获取更多技术分享。

大家好,我是小米!今天我们要聊的话题是在大流量系统中常见的一个问题:数据并发竞争。不管是火车票系统还是微博系统,一旦出现数据并发竞争,都可能导致用户体验下降,甚至系统崩溃。那么,我们该如何解决这个问题呢?让我们一起来深入探讨!

数据并发竞争

当我们谈论大流量系统时,常常会面临着一个不可避免的挑战:数据并发竞争。无论是在线购票系统还是社交网络平台,一旦出现了并发读写的情况,系统的性能和稳定性都会受到极大的考验。想象一下,当某个火车车次的缓存信息过期,但却有大量用户在查询车次信息时,系统会面临着巨大的读取压力;或者是在微博系统中,某条热门微博的缓存突然失效,但用户们却在疯狂转发、评论、点赞。这些情况都可能导致数据并发竞争,给系统带来极大的挑战。因此,我们迫切需要有效的解决方案来解决这一问题。

解决方案

针对数据并发竞争的问题,我们可以采取以下两种解决方案:

1. 加写回操作加互斥锁,查询失败默认值快速返回

加写回操作是指在数据更新时,不立即更新缓存,而是等待下一次读取时再更新。这样做的好处是可以减少写操作对缓存的影响,提高系统性能。同时,通过加入互斥锁,可以确保在写入数据时不会被其他线程读取到脏数据。当查询失败时,可以快速返回默认值,避免用户长时间等待。

2. 对缓存数据保持多个备份,减少并发竞争的概率

保持多个缓存数据备份是为了降低单点故障的风险,同时也可以减少并发竞争的概率。当某个缓存数据被读取或写入时,可以选择其中一个备份进行操作,避免多个线程同时操作同一份数据,从而减少并发竞争的发生。

实践案例

让我们通过一个实际案例来进一步理解以上解决方案。假设我们正在开发一个电商网站,其中包含大量商品信息。为了提高系统性能,我们使用Redis作为缓存数据库。但是,由于商品信息经常发生变化,导致缓存数据频繁失效,从而引发了数据并发竞争的问题。

为了解决这个问题,我们采取了上述两种解决方案。首先,我们实现了加写回操作,并在更新数据时加入了互斥锁,以确保数据的一致性和准确性。其次,我们对缓存数据保持了多个备份,当某个备份数据被读取或写入时,可以选择其他备份进行操作,从而减少了并发竞争的发生。

通过以上措施的实施,我们成功解决了数据并发竞争的问题,提高了系统的稳定性和性能,为用户提供了更好的购物体验。

END

在大流量系统中,数据并发竞争是一个常见的问题,但并不是不可解决的。通过合理的方案和实践经验,我们可以有效地降低并发竞争的概率,提高系统的稳定性和性能。希望本文能对大家有所启发,也欢迎大家分享自己的经验和看法,让我们共同进步,共创美好未来!

文章到这里就结束了,如果你对这个话题还有疑问或者想了解更多内容,欢迎在评论区留言,我会尽快回复你的。同时也欢迎大家关注我的微信公众号软件求生,获取更多有趣的技术分享和实用的开发经验。感谢大家的阅读,我们下期再见!

相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
5月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
335 67
|
4月前
|
存储 缓存 NoSQL
告别数据僵尸!Redis实现自动清理过期键值对
在数据激增的时代,Redis如同内存管理的智能管家,支持键值对的自动过期功能,实现“数据保鲜”。通过`EXPIRE`设定生命倒计时、`TTL`查询剩余时间,结合惰性删除与定期清理策略,Redis高效维护内存秩序。本文以Python实战演示其过期机制,并提供最佳实践指南,助你掌握数据生命周期管理的艺术,让数据优雅退场。
290 0
|
6月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
7月前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用的算法是哈希槽分区算法。Redis集群中有16384个哈希槽(槽的范围是 0 -16383,哈希槽),将不同的哈希槽分布在不同的Redis节点上面进行管理,也就是说每个Redis节点只负责一部分的哈希槽。在对数据进行操作的时候,集群会对使用CRC16算法对key进行计算并对16384取模(slot = CRC16(key)%16383),得到的结果就是 Key-Value 所放入的槽,通过这个值,去找到对应的槽所对应的Redis节点,然后直接到这个对应的节点上进行存取操作
|
7月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
7月前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供 8 种数据淘汰策略: 淘汰易失数据(具有过期时间的数据) 1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰 2. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰 3. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰 4. volatile-random:从已设置过期
|
7月前
|
NoSQL Redis
Redis的数据持久化策略有哪些 ?
Redis 提供了两种方式,实现数据的持久化到硬盘。 1. RDB 持久化(全量),是指在指定的时间间隔内将内存中的数据集快照写入磁盘。 2. AOF持久化(增量),以日志的形式记录服务器所处理的每一个写、删除操作 RDB和AOF一起使用, 在Redis4.0版本支持混合持久化方式 ( 设置 aof-use-rdb-preamble yes )
|
7月前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
1. 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断 a. 如果未过期,返回数据 b. 发现已过期,删除,返回nil 2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。默认情况下 Redis 定期检查的频率是每秒扫描 10 次,用于定期清除过期键。当然此值还可以通过配置文件进行设置,在 redis.conf 中修改配置“hz”
|
10月前
|
缓存 NoSQL Redis
Redis经典问题:数据并发竞争
数据并发竞争是大流量系统(如火车票系统、微博平台)中常见的问题,可能导致用户体验下降甚至系统崩溃。本文介绍了两种解决方案:1) 加写回操作加互斥锁,查询失败快速返回默认值;2) 保持多个缓存备份,减少并发竞争概率。通过实践案例展示,成功提高了系统的稳定性和性能。

相关产品

  • 云数据库 Tair(兼容 Redis)
  • 下一篇
    oss教程