GoogleEarthEnging—可见光红外成像辐射套件(VIIRS)每日表面反射率(VNP09GA)产品提供了来自Suomi国家极地轨道合作伙伴(S-NPP)VIIRS传感器的土地表面反射率估计。

简介: GoogleEarthEnging—可见光红外成像辐射套件(VIIRS)每日表面反射率(VNP09GA)产品提供了来自Suomi国家极地轨道合作伙伴(S-NPP)VIIRS传感器的土地表面反射率估计。

The Visible Infrared Imaging Radiometer Suite (VIIRS) daily surface reflectance (VNP09GA) product provides an estimate of land surface reflectance from the Suomi National Polar-Orbiting Partnership (S-NPP) VIIRS sensor. Data are provided for three imagery bands (I1, I2, I3) at nominal 500 meter resolution (463 meter) and nine moderate-resolution bands (M1, M2, M3, M4, M5, M7, M8, M10, M11) at nominal 1 kilometer (926 meter) resolution. The 500 meter and 1 kilometer datasets are derived through resampling the native 375 meter and 750 meter VIIRS resolutions, respectively, in the L2 input product. These bands are corrected for atmospheric conditions to provide an estimate of the surface spectral reflectance as it would be measured at ground level.

The data is temporally aggregated over each of the 16 possible passes per day. When multiple observations are present for each day, only the first of the highest-quality observations is included.

For additional information, visit the VIIRS Land Product Quality Assessment website and see the User Guide.

Documentation:

  • [User's Guide] (https://lpdaac.usgs.gov/documents/124/VNP09_User_Guide_V1.6.pdf)
  • [Algorithm Theoretical Basis Document (ATBD)] (https://lpdaac.usgs.gov/documents/122/VNP09_ATBD.pdf)
    可见光红外成像辐射套件(VIIRS)每日表面反射率(VNP09GA)产品提供了来自Suomi国家极地轨道合作伙伴(S-NPP)VIIRS传感器的土地表面反射率估计。提供了三个图像波段(I1、I2、I3)的标称500米分辨率(463米)和九个中等分辨率波段(M1、M2、M3、M4、M5、M7、M8、M10、M11)的数据,标称1公里(926米)分辨率。500米和1公里的数据集是通过对L2输入产品中375米和750米的VIIRS原始分辨率重新取样得出的。这些波段根据大气条件进行了校正,以提供在地面测量的表面光谱反射率的估计。
    数据在时间上被汇总到每天16个可能的通道中的每一个。当每天有多个观测值时,只包括质量最高的第一个观测值。
    有关其他信息,请访问VIIRS陆地产品质量评估网站并查看用户指南。
    文件。
    [用户指南] (https://lpdaac.usgs.gov/documents/124/VNP09_User_Guide_V1.6.pdf)
    [算法理论基础文件(ATBD)] (https://lpdaac.usgs.gov/documents/122/VNP09_ATBD.pdf)

Dataset Availability

2012-01-19T00:00:00 - 2021-09-29T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("NOAA/VIIRS/001/VNP09GA")


Bands Table

Name Description Min Max Resolution Units Wavelength Scale
M1 1km surface reflectance band M1 -100 16000 1000 meters 0.402 - 0.422μm 0.0001
M2 1km surface reflectance Band M2 -100 16000 1000 meters 0.436 - 0.454μm 0.0001
M3 1km surface reflectance band M3 -100 16000 1000 meters 0.478 - 0.488μm 0.0001
M4 1km surface reflectance band M4 -100 16000 1000 meters 0.545 - 0.565μm 0.0001
M5 1km surface reflectance band M5 -100 16000 1000 meters 0.662 - 0.682μm 0.0001
M7 1km surface reflectance band M7 -100 16000 1000 meters 0.846 - 0.885μm 0.0001
M8 1km surface reflectance band M8 -100 16000 1000 meters 1.230 - 1.250μm 0.0001
M10 1km surface reflectance band M10 -100 16000 1000 meters 1.580 - 1.640μm 0.0001
M11 1km surface reflectance band M11 -100 16000 1000 meters 2.230 - 2.280μm 0.0001
I1 500m surface reflectance band I1 -100 16000 500 meters 0.600 - 0.680μm 0.0001
I2 500m surface reflectance band I2 -100 16000 500 meters 0.850 - 0.880μm 0.0001
I3 500m surface reflectance band I3 -100 16000 500 meters 1.580 - 1.640μm 0.0001
SensorAzimuth Sensor azimuth angle -18000 18000 1000 meters Degrees 0.01
SensorZenith Sensor zenith angle 0 18000 1000 meters Degrees 0.01
SolarAzimuth Solar azimuth angle -18000 18000 1000 meters Degrees 0.01
SolarZenith Solar zenith angle 0 18000 1000 meters Degrees 0.01
iobs_res Observation number 0 254 500 meters 0
num_observations_1km Number of observations 1km 0 127 1000 meters 0
num_observations_500m Number of observations 500m 0 127 500 meters 0
obscov_1km Observations coverage 1km 0 100 1000 meters % 0
obscov_500m Observations coverage 500km 0 100 500 meters % 0
orbit_pnt Orbit pointer 0 15 1000 meters 0
QF1 Quality flags 1 1000 meters 0
QF1 Bitmask
  • Bits 0-1: Cloud mask quality
    • 0: Poor
    • 1: Low
    • 2: Medium
    • 3: High
  • Bits 2-3: Cloud detection & confidence
    • 0: Confident clear
    • 1: Probably clear
    • 2: Probably cloudy
    • 3: Confident cloudy
  • Bit 4: Day/night
    • 0: Day
    • 1: Night
  • Bit 5: Low sun mask
    • 0: High
    • 1: Low
  • Bits 6-7: Sun glint
    • 0: None
    • 1: Geometry based
    • 2: Wind speed based
    • 3: Geometry and wind speed based
QF2 Quality flags 2 1000 meters 0
QF2 Bitmask
  • Bits 0-2: Land/water background
    • 0: Land & desert
    • 1: Land no desert
    • 2: Inland water
    • 3: Sea water
    • 4: ---
    • 5: Coastal
  • Bit 3: Shadow mask
    • 0: No cloud shadow
    • 1: Shadow
  • Bit 4: Heavy aerosol mask
    • 0: No heavy aerosol
    • 1: Heavy aerosol
  • Bit 5: Snow/ice
    • 0: No snow/ice
    • 1: Snow or ice
  • Bit 6: Thin cirrus reflective
    • 0: No cloud
    • 1: Cloud
  • Bit 7: This cirrus emissive
    • 0: No cloud
    • 1: Cloud
QF3 Quality flags 3 1000 meters 0
QF3 Bitmask
  • Bit 0: Bad M1 SDR data
    • 0: No
    • 1: Yes
  • Bit 1: Bad M2 SDR data
    • 0: No
    • 1: Yes
  • Bit 2: Bad M3 SDR data
    • 0: No
    • 1: Yes
  • Bit 3: Bad M4 SDR data
    • 0: No
    • 1: Yes
  • Bit 4: Bad M5 SDR data
    • 0: No
    • 1: Yes
  • Bit 5: Bad M7 SDR data
    • 0: No
    • 1: Yes
  • Bit 6: Bad M8 SDR data
    • 0: No
    • 1: Yes
  • Bit 7: Bad M10 SDR data
    • 0: No
    • 1: Yes
QF4 Quality flags 4 1000 meters 0
QF4 Bitmask
  • Bit 0: Bad M11 SDR data
    • 0: No
    • 1: Yes
  • Bit 1: Bad I1 SDR data
    • 0: No
    • 1: Yes
  • Bit 2: Bad I2 SDR data
    • 0: No
    • 1: Yes
  • Bit 3: Bad I3 SDR data
    • 0: No
    • 1: Yes
  • Bit 4: Overall quality of AOT
    • 0: Good
    • 1: Bad
  • Bit 5: Missing AOT input data
    • 0: No
    • 1: Yes
  • Bit 6: Invalid land AM input data
    • 0: Valid
    • 1: Invalid AM input over land or over ocean
  • Bit 7: Missing PW input data
    • 0: No
    • 1: Yes
QF5 Quality flags 5 1000 meters 0
QF5 Bitmask
  • Bit 0: Missing ozone input data
    • 0: No
    • 1: Yes
  • Bit 1: Missing surface pressure input data
    • 0: No
    • 1: Yes
  • Bit 2: Overall quality M1 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 3: Overall quality M2 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 4: Overall quality M3 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 5: Overall quality M4 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 6: Overall quality M5 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 7: Overall quality M7 surface reflection data
    • 0: Good
    • 1: Bad
QF6 Quality flags 6 1000 meters 0
QF6 Bitmask
  • Bit 0: Overall quality M8 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 1: Overall quality M10 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 2: Overall quality M11 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 3: Overall quality I1 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 4: Overall quality I2 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 5: Overall quality I3 surface reflection data
    • 0: Good
    • 1: Bad
QF7 Quality flags 7 1000 meters 0
QF7 Bitmask
  • Bit 0: Snow present
    • 0: No
    • 1: Yes
  • Bit 1: Adjacent to cloud
    • 0: No
    • 1: Yes
  • Bits 2-3: Aerosol quantity
    • 0: Climatology
    • 1: Low
    • 2: Average
    • 3: High
  • Bit 4: Thin cirrus flag
    • 0: No
    • 1: Yes


数据说明:

LP DAAC NASA data are freely accessible; however, when an author publishes these data or works based on the data, it is requested that the author cite the datasets within the text of the publication and include a reference to them in the reference list.

引用:

LP DAAC - VNP09GA

代码:

var dataset = ee.ImageCollection('NOAA/VIIRS/001/VNP09GA')
                  .filter(ee.Filter.date('2017-05-01', '2017-05-31'));
var rgb = dataset.select(['M5', 'M4', 'M3']);
var rgbVis = {
  min: 0.0,
  max: 3000.0,
};
Map.setCenter(17.93, 7.71, 2);
Map.addLayer(rgb, rgbVis, 'RGB');



相关文章
|
9月前
|
传感器 算法 智能硬件
m基于GA遗传优化算法的三维室内红外传感器部署策略matlab仿真
m基于GA遗传优化算法的三维室内红外传感器部署策略matlab仿真
238 0
|
9月前
|
传感器 算法 BI
m基于GA遗传优化算法的二维室内红外传感器部署策略matlab仿真
m基于GA遗传优化算法的二维室内红外传感器部署策略matlab仿真
218 0
|
机器学习/深度学习 传感器 算法
m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真
m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真
127 0
m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真
|
6月前
|
机器学习/深度学习 数据采集 算法
m基于GA-LSTM遗传优化长短期记忆网络的电力负荷数据预测算法matlab仿真
m基于GA-LSTM遗传优化长短期记忆网络的电力负荷数据预测算法matlab仿真
64 4
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于GA优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
该内容描述了一个使用CNN-LSTM-Attention模型优化时间序列预测的过程。在优化前后,算法的预测效果有明显提升,软件版本为matlab2022a。理论部分介绍了CNN用于特征提取,LSTM处理序列依赖,Attention关注重要信息,以及遗传算法(GA)优化超参数。提供的核心代码展示了GA的优化迭代和模型训练,以及预测结果的可视化比较。
|
5月前
|
机器学习/深度学习 算法 数据库
m基于GA-CNN遗传优化卷积神经网络的手势识别算法matlab仿真
m基于GA-CNN遗传优化卷积神经网络的手势识别算法matlab仿真
71 1
|
7月前
|
机器学习/深度学习 传感器 算法
GA-BP回归预测 | Matlab 遗传算法优化算法优化BP神经网络回归预测
GA-BP回归预测 | Matlab 遗传算法优化算法优化BP神经网络回归预测
|
4月前
|
算法
【MATLAB】GA遗传算法优化的VMD信号分解算法
【MATLAB】GA遗传算法优化的VMD信号分解算法
64 0
【MATLAB】GA遗传算法优化的VMD信号分解算法
|
7月前
|
机器学习/深度学习 传感器 算法
GA-LSTM回归预测 | Matlab遗传算法优化长短时记忆网络回归预测
GA-LSTM回归预测 | Matlab遗传算法优化长短时记忆网络回归预测
|
7月前
|
机器学习/深度学习 传感器 算法
Matlab 遗传算法优化极限学习机(GA-ELM)分类预测
Matlab 遗传算法优化极限学习机(GA-ELM)分类预测