GoogleEarthEnging—可见光红外成像辐射套件(VIIRS)每日表面反射率(VNP09GA)产品提供了来自Suomi国家极地轨道合作伙伴(S-NPP)VIIRS传感器的土地表面反射率估计。

简介: GoogleEarthEnging—可见光红外成像辐射套件(VIIRS)每日表面反射率(VNP09GA)产品提供了来自Suomi国家极地轨道合作伙伴(S-NPP)VIIRS传感器的土地表面反射率估计。

The Visible Infrared Imaging Radiometer Suite (VIIRS) daily surface reflectance (VNP09GA) product provides an estimate of land surface reflectance from the Suomi National Polar-Orbiting Partnership (S-NPP) VIIRS sensor. Data are provided for three imagery bands (I1, I2, I3) at nominal 500 meter resolution (463 meter) and nine moderate-resolution bands (M1, M2, M3, M4, M5, M7, M8, M10, M11) at nominal 1 kilometer (926 meter) resolution. The 500 meter and 1 kilometer datasets are derived through resampling the native 375 meter and 750 meter VIIRS resolutions, respectively, in the L2 input product. These bands are corrected for atmospheric conditions to provide an estimate of the surface spectral reflectance as it would be measured at ground level.

The data is temporally aggregated over each of the 16 possible passes per day. When multiple observations are present for each day, only the first of the highest-quality observations is included.

For additional information, visit the VIIRS Land Product Quality Assessment website and see the User Guide.

Documentation:

  • [User's Guide] (https://lpdaac.usgs.gov/documents/124/VNP09_User_Guide_V1.6.pdf)
  • [Algorithm Theoretical Basis Document (ATBD)] (https://lpdaac.usgs.gov/documents/122/VNP09_ATBD.pdf)
    可见光红外成像辐射套件(VIIRS)每日表面反射率(VNP09GA)产品提供了来自Suomi国家极地轨道合作伙伴(S-NPP)VIIRS传感器的土地表面反射率估计。提供了三个图像波段(I1、I2、I3)的标称500米分辨率(463米)和九个中等分辨率波段(M1、M2、M3、M4、M5、M7、M8、M10、M11)的数据,标称1公里(926米)分辨率。500米和1公里的数据集是通过对L2输入产品中375米和750米的VIIRS原始分辨率重新取样得出的。这些波段根据大气条件进行了校正,以提供在地面测量的表面光谱反射率的估计。
    数据在时间上被汇总到每天16个可能的通道中的每一个。当每天有多个观测值时,只包括质量最高的第一个观测值。
    有关其他信息,请访问VIIRS陆地产品质量评估网站并查看用户指南。
    文件。
    [用户指南] (https://lpdaac.usgs.gov/documents/124/VNP09_User_Guide_V1.6.pdf)
    [算法理论基础文件(ATBD)] (https://lpdaac.usgs.gov/documents/122/VNP09_ATBD.pdf)

Dataset Availability

2012-01-19T00:00:00 - 2021-09-29T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("NOAA/VIIRS/001/VNP09GA")


Bands Table

Name Description Min Max Resolution Units Wavelength Scale
M1 1km surface reflectance band M1 -100 16000 1000 meters 0.402 - 0.422μm 0.0001
M2 1km surface reflectance Band M2 -100 16000 1000 meters 0.436 - 0.454μm 0.0001
M3 1km surface reflectance band M3 -100 16000 1000 meters 0.478 - 0.488μm 0.0001
M4 1km surface reflectance band M4 -100 16000 1000 meters 0.545 - 0.565μm 0.0001
M5 1km surface reflectance band M5 -100 16000 1000 meters 0.662 - 0.682μm 0.0001
M7 1km surface reflectance band M7 -100 16000 1000 meters 0.846 - 0.885μm 0.0001
M8 1km surface reflectance band M8 -100 16000 1000 meters 1.230 - 1.250μm 0.0001
M10 1km surface reflectance band M10 -100 16000 1000 meters 1.580 - 1.640μm 0.0001
M11 1km surface reflectance band M11 -100 16000 1000 meters 2.230 - 2.280μm 0.0001
I1 500m surface reflectance band I1 -100 16000 500 meters 0.600 - 0.680μm 0.0001
I2 500m surface reflectance band I2 -100 16000 500 meters 0.850 - 0.880μm 0.0001
I3 500m surface reflectance band I3 -100 16000 500 meters 1.580 - 1.640μm 0.0001
SensorAzimuth Sensor azimuth angle -18000 18000 1000 meters Degrees 0.01
SensorZenith Sensor zenith angle 0 18000 1000 meters Degrees 0.01
SolarAzimuth Solar azimuth angle -18000 18000 1000 meters Degrees 0.01
SolarZenith Solar zenith angle 0 18000 1000 meters Degrees 0.01
iobs_res Observation number 0 254 500 meters 0
num_observations_1km Number of observations 1km 0 127 1000 meters 0
num_observations_500m Number of observations 500m 0 127 500 meters 0
obscov_1km Observations coverage 1km 0 100 1000 meters % 0
obscov_500m Observations coverage 500km 0 100 500 meters % 0
orbit_pnt Orbit pointer 0 15 1000 meters 0
QF1 Quality flags 1 1000 meters 0
QF1 Bitmask
  • Bits 0-1: Cloud mask quality
    • 0: Poor
    • 1: Low
    • 2: Medium
    • 3: High
  • Bits 2-3: Cloud detection & confidence
    • 0: Confident clear
    • 1: Probably clear
    • 2: Probably cloudy
    • 3: Confident cloudy
  • Bit 4: Day/night
    • 0: Day
    • 1: Night
  • Bit 5: Low sun mask
    • 0: High
    • 1: Low
  • Bits 6-7: Sun glint
    • 0: None
    • 1: Geometry based
    • 2: Wind speed based
    • 3: Geometry and wind speed based
QF2 Quality flags 2 1000 meters 0
QF2 Bitmask
  • Bits 0-2: Land/water background
    • 0: Land & desert
    • 1: Land no desert
    • 2: Inland water
    • 3: Sea water
    • 4: ---
    • 5: Coastal
  • Bit 3: Shadow mask
    • 0: No cloud shadow
    • 1: Shadow
  • Bit 4: Heavy aerosol mask
    • 0: No heavy aerosol
    • 1: Heavy aerosol
  • Bit 5: Snow/ice
    • 0: No snow/ice
    • 1: Snow or ice
  • Bit 6: Thin cirrus reflective
    • 0: No cloud
    • 1: Cloud
  • Bit 7: This cirrus emissive
    • 0: No cloud
    • 1: Cloud
QF3 Quality flags 3 1000 meters 0
QF3 Bitmask
  • Bit 0: Bad M1 SDR data
    • 0: No
    • 1: Yes
  • Bit 1: Bad M2 SDR data
    • 0: No
    • 1: Yes
  • Bit 2: Bad M3 SDR data
    • 0: No
    • 1: Yes
  • Bit 3: Bad M4 SDR data
    • 0: No
    • 1: Yes
  • Bit 4: Bad M5 SDR data
    • 0: No
    • 1: Yes
  • Bit 5: Bad M7 SDR data
    • 0: No
    • 1: Yes
  • Bit 6: Bad M8 SDR data
    • 0: No
    • 1: Yes
  • Bit 7: Bad M10 SDR data
    • 0: No
    • 1: Yes
QF4 Quality flags 4 1000 meters 0
QF4 Bitmask
  • Bit 0: Bad M11 SDR data
    • 0: No
    • 1: Yes
  • Bit 1: Bad I1 SDR data
    • 0: No
    • 1: Yes
  • Bit 2: Bad I2 SDR data
    • 0: No
    • 1: Yes
  • Bit 3: Bad I3 SDR data
    • 0: No
    • 1: Yes
  • Bit 4: Overall quality of AOT
    • 0: Good
    • 1: Bad
  • Bit 5: Missing AOT input data
    • 0: No
    • 1: Yes
  • Bit 6: Invalid land AM input data
    • 0: Valid
    • 1: Invalid AM input over land or over ocean
  • Bit 7: Missing PW input data
    • 0: No
    • 1: Yes
QF5 Quality flags 5 1000 meters 0
QF5 Bitmask
  • Bit 0: Missing ozone input data
    • 0: No
    • 1: Yes
  • Bit 1: Missing surface pressure input data
    • 0: No
    • 1: Yes
  • Bit 2: Overall quality M1 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 3: Overall quality M2 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 4: Overall quality M3 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 5: Overall quality M4 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 6: Overall quality M5 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 7: Overall quality M7 surface reflection data
    • 0: Good
    • 1: Bad
QF6 Quality flags 6 1000 meters 0
QF6 Bitmask
  • Bit 0: Overall quality M8 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 1: Overall quality M10 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 2: Overall quality M11 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 3: Overall quality I1 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 4: Overall quality I2 surface reflection data
    • 0: Good
    • 1: Bad
  • Bit 5: Overall quality I3 surface reflection data
    • 0: Good
    • 1: Bad
QF7 Quality flags 7 1000 meters 0
QF7 Bitmask
  • Bit 0: Snow present
    • 0: No
    • 1: Yes
  • Bit 1: Adjacent to cloud
    • 0: No
    • 1: Yes
  • Bits 2-3: Aerosol quantity
    • 0: Climatology
    • 1: Low
    • 2: Average
    • 3: High
  • Bit 4: Thin cirrus flag
    • 0: No
    • 1: Yes


数据说明:

LP DAAC NASA data are freely accessible; however, when an author publishes these data or works based on the data, it is requested that the author cite the datasets within the text of the publication and include a reference to them in the reference list.

引用:

LP DAAC - VNP09GA

代码:

var dataset = ee.ImageCollection('NOAA/VIIRS/001/VNP09GA')
                  .filter(ee.Filter.date('2017-05-01', '2017-05-31'));
var rgb = dataset.select(['M5', 'M4', 'M3']);
var rgbVis = {
  min: 0.0,
  max: 3000.0,
};
Map.setCenter(17.93, 7.71, 2);
Map.addLayer(rgb, rgbVis, 'RGB');



相关文章
|
传感器 算法 智能硬件
m基于GA遗传优化算法的三维室内红外传感器部署策略matlab仿真
m基于GA遗传优化算法的三维室内红外传感器部署策略matlab仿真
269 0
|
传感器 算法 BI
m基于GA遗传优化算法的二维室内红外传感器部署策略matlab仿真
m基于GA遗传优化算法的二维室内红外传感器部署策略matlab仿真
248 0
|
机器学习/深度学习 传感器 算法
m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真
m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真
159 0
m基于GA遗传优化BP神经网络的传感器故障诊断matlab仿真
|
算法
m基于GA遗传优化+SA模拟退火的混合改进算法的多产品多机器生产优化matlab仿真
m基于GA遗传优化+SA模拟退火的混合改进算法的多产品多机器生产优化matlab仿真
237 0
m基于GA遗传优化+SA模拟退火的混合改进算法的多产品多机器生产优化matlab仿真
|
算法 BI
m分别通过GA遗传优化算法对企业不同产品订单生产进行时间优化
m分别通过GA遗传优化算法对企业不同产品订单生产进行时间优化
103 0
m分别通过GA遗传优化算法对企业不同产品订单生产进行时间优化
冰川游戏:阿里云洛神云网络全球加速产品助力海外游戏加速,提升玩家体验
游戏在海外发行的过程中势必会遇到如何保证玩家获得较好的游戏体验的问题。通过互联网的方式直接提供公网访问服务,在遇到外部运营商的网络拥塞,链路中断抖动的问题时,容易造成游戏掉线,卡顿等问题,严重影响玩家的实际业务体验,阻碍了业务的发展。阿里云全球一张网在各大洲和国家的互联网覆盖能力,打造面向海外用户高质量体验的游戏产品,提升用户的游戏访问体验。
685 0
冰川游戏:阿里云洛神云网络全球加速产品助力海外游戏加速,提升玩家体验
|
存储 网络协议 物联网
引入阿里云GA,商米加速IoT产品和解决方案全球化布局
商米引入阿里全球加速GA,加速实现信息化办公系统全球部署,全球员工访问体验提升50%。
1706 0
引入阿里云GA,商米加速IoT产品和解决方案全球化布局
|
7天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。

热门文章

最新文章