Google Earth Engine——VNP13算法过程产生三种植被指数。(1)归一化差异植被指数(NDVI),(2)增强植被指数(EVI),以及(3)增强植被指数-2(EVI2)。

简介: Google Earth Engine——VNP13算法过程产生三种植被指数。(1)归一化差异植被指数(NDVI),(2)增强植被指数(EVI),以及(3)增强植被指数-2(EVI2)。

The Suomi National Polar-Orbiting Partnership (S-NPP) NASA Visible Infrared Imaging Radiometer Suite (VIIRS) Vegetation Indices (VNP13A1) data product provides vegetation indices by a process of selecting the best available pixel over a 16-day acquisition period at 500 meter resolution. The VNP13 data products are designed after the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua Vegetation Indices product suite to promote the continuity of the Earth Observation System (EOS) mission.

The VNP13 algorithm process produces three vegetation indices: (1) Normalized Difference Vegetation Index (NDVI), (2) the Enhanced Vegetation Index (EVI), and (3) Enhanced Vegetation Index-2 (EVI2). (1) NDVI is one of the longest continual remotely sensed time series observations, using both the red and near-infrared (NIR) bands. (2) EVI is a slightly different vegetation index that is more sensitive to canopy cover, while NDVI is more sensitive to chlorophyll. (3) EVI2 is a reformation of the standard 3-band EVI, using the red band and NIR band. This reformation addresses arising issues when comparing VIIRS EVI to other EVI models that do not include a blue band. EVI2 will eventually become the standard EVI.

Along with the three Vegetation Indices layers, this product also includes layers for near-infrared (NIR) reflectance; three shortwave infrared (SWIR) reflectance—red, blue, and green reflectance; composite day of year; pixel reliability; view and sun angles, and a quality layer.

For additional information, visit the VIIRS Land Product Quality Assessment website and see the User Guide.

Documentation:


苏米国家极地轨道伙伴计划(S-NPP)NASA可见光红外成像辐射计套件(VIIRS)植被指数(VNP13A1)数据产品通过在500米分辨率下,在16天的采集期内选择最佳可用像素的过程提供植被指数。VNP13数据产品是在中分辨率成像光谱仪(MODIS)Terra和Aqua植被指数产品套件之后设计的,以促进地球观测系统(EOS)任务的延续性。
VNP13算法过程产生三种植被指数。(1)归一化差异植被指数(NDVI),(2)增强植被指数(EVI),以及(3)增强植被指数-2(EVI2)。(1) NDVI是持续时间最长的遥感时间序列观测之一,使用红色和近红外(NIR)波段。(2) EVI是一个稍有不同的植被指数,对树冠覆盖率更敏感,而NDVI对叶绿素更敏感。(3) EVI2是对标准的3波段EVI的改造,使用红波段和近红外波段。这一改革解决了在比较VIIRS EVI和其他不包括蓝色波段的EVI模型时出现的问题。EVI2最终将成为标准的EVI。
除了三个植被指数层,该产品还包括近红外(NIR)反射率层;三个短波红外(SWIR)反射率--红色、蓝色和绿色反射率;复合年日;像素可靠性;视角和太阳角度,以及质量层。
有关其他信息,请访问VIIRS土地产品质量评估网站,并查看用户指南。
文件。
用户指南
算法理论基础文件(ATBD)
一般文件

Dataset Availability

2012-01-17T00:00:00 - 2021-09-06T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("NOAA/VIIRS/001/VNP13A1")

Resolution

500 meters

Bands Table

Name Description Units Wavelength Scale
EVI 3 band Enhanced Vegetation Index 0.0001
EVI2 2 band Enhanced Vegetation Index 0.0001
NDVI Normalized Difference Vegetation Index 0.0001
NIR_reflectance Near-infrared Radiation reflectance 846-885nm 0
SWIR1_reflectance Shortwave Infrared Radiation reflectance 1230-1250nm 0
SWIR2_reflectance Shortwave Infrared Radiation reflectance 1580-1640nm 0
SWIR3_reflectance Shortwave Infrared Radiation reflectance 2225-2275nm 0
VI_Quality Quality Assessment (QA) bit-field. 0
VI_Quality Bitmask
  • Bits 0-1: MODLAND_QA
    • 0: VI produced, good quality
    • 1: VI produced, but check other QA
    • 2: Pixel produced, but probably cloudy
    • 3: Pixel not produced due to other reason than clouds
  • Bits 2-5: VI Usefulness, higher values are worse.
    • 0: Highest Quality
    • 1: Lower quality
    • 2: Decreasing quality
    • 3: Decreasing quality
    • 4: Decreasing quality
    • 5: Decreasing quality
    • 6: Decreasing quality
    • 7: Decreasing quality
    • 8: Decreasing quality
    • 9: Decreasing quality
    • 10: Decreasing quality
    • 11: Decreasing quality
    • 12: Worst quality
    • 13: Quality so low that it is not useful
    • 14: L1B data faulty
    • 15: Not useful for any reason/not processed
  • Bits 6-7: Aerosol quantity
    • 0: Climatology
    • 1: Low
    • 2: Average
    • 3: High
  • Bit 8: Adjacent cloud detected
    • 0: No
    • 1: Yes
  • Bit 9: Adjacent BRDF correction performed
    • 0: No
    • 1: Yes
  • Bit 10: Mixed clouds
    • 0: No
    • 1: Yes
  • Bits 11-13: Land/Water Flag
    • 0: land & desert
    • 1: land no desert
    • 2: inland water
    • 3: sea_water
    • 5: coastal
  • Bit 14: Possible snow/ice
    • 0: No
    • 1: Yes
  • Bit 15: Possible shadow
    • 0: No
    • 1: Yes
red_reflectance Red band reflectance 600-680nm 0
green_reflectance Green band reflectance 545-656nm 0
blue_reflectance Blue band reflectance 478-498nm 0
composite_day_of_the_year Julian day of year Day 0
pixel_reliability Pixel usefulness using a simple rank class 0
relative_azimuth_angle Relative azimuth angle for each pixel degrees 0
sun_zenith_angle Sun zenith angle for each pixel degrees 0
view_zenith_angle View zenith angle for each pixel degrees 0

Class Table: pixel_reliability

Value Color Color Value Description
0 # Excellent
1 # Good
2 # Acceptable
3 # Marginal
4 # Pass
5 # Questionable
6 # Poor
7 # Cloud Shadow
8 # Snow/Ice
9 # Cloud
10 # Estimated
11 # LTAVG (taken from database)


数据使用:

LP DAAC NASA data are freely accessible; however, when an author publishes these data or works based on the data, it is requested that the author cite the datasets within the text of the publication and include a reference to them in the reference list.

引用:

LP DAAC - VNP13A1

代码 :

var dataset = ee.ImageCollection("NOAA/VIIRS/001/VNP13A1");
var mean_evi_january_2018 = dataset
    .filterDate('2018-01-01', '2018-01-31')
    .select('EVI')
    .mean();
var evi_vis = {
  min: 0.0,
  max: 10000.0,
  palette: ["000", "040", "080", "0B0", "0F0"],
};
Map.setCenter(95.571, 27.808, 8);
Map.addLayer(mean_evi_january_2018, evi_vis, 'Mean EVI January 2018');


相关文章
|
3月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
550 0
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
3月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
26 0
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
106 0
|
2月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
260 0
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
3月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
29 0
|
11天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
|
26天前
|
机器学习/深度学习 算法
【MATLAB】GA_BP神经网络时序预测算法
【MATLAB】GA_BP神经网络时序预测算法
35 8
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于DCT变换的彩色图像双重水印嵌入和提取算法matlab仿真
**算法摘要:** - 图形展示:展示灰度与彩色图像水印应用,主辅水印嵌入。 - 软件环境:MATLAB 2022a。 - 算法原理:双重水印,转换至YCbCr/YIQ,仅影响亮度;图像分割为M×N块,DCT变换后嵌入水印。 - 流程概览:两步水印嵌入,每步对应不同图示表示。 - 核心代码未提供。
|
1天前
|
机器学习/深度学习 算法 数据可视化
Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化
Matlab决策树、模糊C-均值聚类算法分析高校教师职称学历评分可视化
|
2天前
|
算法 TensorFlow 算法框架/工具
基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到"result.txt"以供MATLAB显示图像分割效果。