《python 与数据挖掘 》一 1.2 工具简介

简介:

本节书摘来自华章出版社《python 与数据挖掘 》一书中的第1章,第1.2节,作者张良均 杨海宏 何子健 杨 征,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.2 工具简介

数据挖掘软件的历史并不长,甚至连“数据挖掘”这个术语也是在19世纪90年代中期才正式被提出。如今,商用数据挖掘软件和开源工具都已经非常成熟,不仅提供易用的可视化界面,还集成了数据处理、建模、评估等一整套功能。
部分开源的数据挖掘软件,采用可视化编程的设计思路。之所以这么做,是因为它能足够灵活和易用,更适合缺乏计算机科学知识的用户,如WEKA和RapidMiner。
当用户拥有较多特定的分析需求,或正在自行实现一个改进的机器学习算法时,脚本型语言如Python和R将更符合需要。同时,脚本型语言兼具运行效率和开发效率,支持敏捷型的迭代更新。

1.2.1 WEKA

用Java编写的WEKA是一款知名的数据挖掘工作平台,它因解决数据挖掘任务的实际需求而生,集成了大量能处理数据挖掘任务的机器学习算法,这些算法能被用户直接应用于数据集之上。同时,WEKA允许开发者使用Java语言,调用其分析组件,基于WEKA的架构进行二次开发,融入更多的数据挖掘算法,并嵌入到软件或者应用之中,自动完成数据挖掘任务,开发新的机器学习框架。
WEKA 支持多种标准数据挖掘任务,包括数据预处理,分类、回归分析、聚类、关联规则等算法的应用,以及特征工程和可视化。其欢迎界面如图1-1所示。


1_1


1.2.2 RapidMiner

RapidMiner的目标是:“成为一个能将数据变成宝贵的战略资产的现代平台”,已被广泛使用于商业应用、学术研究、教育、敏捷开发等领域。
RapidMiner是一个支持数据挖掘、文本挖掘、机器学习、商业分析等任务的集成环境,如图1-2所示。其图形化界面采用了类似Windows资源管理器中的树状结构来组织分析组件,提供500多种分析组件作为计算单元(Operator),服务于数据挖掘的各个环节,如数据预处理、变换、探索、建模、评估及结果可视化。这些计算单元有详细的XML 文件记录。
RapidMiner是基于WEKA二次开发的应用,这意味着它可以调用WEKA中的各种分析组件。


1_2


1.2.3 Python

Python是一门编程语言。随着NumPy、SciPy、Matplotlib和Pandas等众多程序库的开发,Python在科学计算和数据分析领域占据着越来越重要的地位。在大多数数据任务上,Python的运行效率已经可以媲美C/C++语言。2016年2月11日,科学家宣布:人类在去年9月首次直接探测到了引力波!引力波高峰只持续了四分之一秒,同时仪器接收了大量干扰噪声, 需要处理的数据量以TB计,如图1-3所示。其中,Python的GWPY模块提供专业的数据分析支持。


1_3


1.2.4 R

R语言是一种为统计计算和图形显示而设计的语言环境,是贝尔实验室(Bell Laboratory)的Rick Becker、John Chambers和Allan Wilks开发的S语言的一种实现,包含一系列统计与图形显示工具,如图1-4所示。它是由一个庞大且活跃的全球性研究型社区维护,主要包括核心的标准包和各个专业领域的第三方包,提供丰富的统计分析和数据挖掘功能。
R语言至少拥有以下优势:①方便地从各种类型的数据源中获取数据;②高可拓展性;③出色的统计计算功能;④顶尖水准的制图功能;⑤不断贡献强大功能的开源社区。它与Python同属数据挖掘主流编程语言,而从功能与代码风格的角度来评价,R与MATLAB是最像的。


1_4


相关文章
|
11天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
2天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
14 4
|
2天前
|
设计模式 程序员 数据处理
编程之旅:探索Python中的装饰器
【10月更文挑战第34天】在编程的海洋中,Python这艘航船以其简洁优雅著称。其中,装饰器作为一项高级特性,如同船上的风帆,让代码更加灵活和强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一起感受编程之美。
|
4天前
|
存储 人工智能 数据挖掘
从零起步,揭秘Python编程如何带你从新手村迈向高手殿堂
【10月更文挑战第32天】Python,诞生于1991年的高级编程语言,以其简洁明了的语法成为众多程序员的入门首选。从基础的变量类型、控制流到列表、字典等数据结构,再到函数定义与调用及面向对象编程,Python提供了丰富的功能和强大的库支持,适用于Web开发、数据分析、人工智能等多个领域。学习Python不仅是掌握一门语言,更是加入一个充满活力的技术社区,开启探索未知世界的旅程。
15 5
|
2天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
11 1
|
2天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
18 2
下一篇
无影云桌面