图解大数据 | 使用Spark分析新冠肺炎疫情数据@综合案例

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 2020以来新冠疫情改变了全世界,影响着大家的生活,本案例结合大数据分析技术,使用pyspark对2020年美国新冠肺炎疫情进行数据分析,并结合可视化方法进行结果呈现。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/84
本文地址http://www.showmeai.tech/article-detail/176
声明:版权所有,转载请联系平台与作者并注明出处

收藏ShowMeAI查看更多精彩内容


引言

2020以来新冠疫情改变了全世界,影响着大家的生活,本案例结合大数据分析技术,使用pyspark对2020年美国新冠肺炎疫情进行数据分析,并结合可视化方法进行结果呈现。

1.实验环境

  • (1)Linux: Ubuntu 16.04
  • (2)Hadoop3.1.3
  • (3)Python: 3.8
  • (4)Spark: 2.4.0
  • (5)Jupyter Notebook

2.数据集

1)数据集下载

本案例使用的数据集来自Kaggle平台的美国新冠肺炎疫情数据集,数据名称us-counties.csv,为csv文件,它包含了美国发现首例新冠肺炎确诊病例至2020-05-19的相关数据。

数据集下载(百度网盘)
链接: https://pan.baidu.com/s/1YNY2UREm5lXsNkHM3DZFmA
提取码:show

数据一览如下:

使用Spark分析美国新冠肺炎疫情数据; 美国新冠肺炎疫情数据集; 10-1

2)格式转换

原始数据为csv格式文件,我们首先做一点数据格式转换,方便spark读取数据生成RDD或者DataFrame,具体数据转换代码如下:

import pandas as pd
#.csv->.txt
data = pd.read_csv('/home/hadoop/us-counties.csv')
with open('/home/hadoop/us-counties.txt','a+',encoding='utf-8') as f:
    for line in data.values:
        f.write((str(line[0])+'\t'+str(line[1])+'\t'
                +str(line[2])+'\t'+str(line[3])+'\t'+str(line[4])+'\n'))

3)数据上传至HDFS

然后上传“/home/hadoop/us-counties.txt”至HDFS文件系统中,具体路径为“/user/hadoop/us-counties.txt”。操作命令如下:

./bin/hdfs dfs -put /home/hadoop/us-counties.txt /user/hadoop

3.使用Spark对数据进行分析

这里采用Python作为编程语言,结合pyspark进行数据分析。

1)数据读取与DataFrame构建

首先我们读取数据文件,生成Spark DataFrame。
本案例中使用的数据为结构化数据,因此可以使用spark读取源文件生成DataFrame以方便进行后续分析实现。

from pyspark import SparkConf,SparkContext
from pyspark.sql import Row
from pyspark.sql.types import *
from pyspark.sql import SparkSession
from datetime import datetime
import pyspark.sql.functions as func

def toDate(inputStr):
    newStr = ""
    if len(inputStr) == 8:
        s1 = inputStr[0:4]
        s2 = inputStr[5:6]
        s3 = inputStr[7]
        newStr = s1+"-"+"0"+s2+"-"+"0"+s3
    else:
        s1 = inputStr[0:4]
        s2 = inputStr[5:6]
        s3 = inputStr[7:]
        newStr = s1+"-"+"0"+s2+"-"+s3
    date = datetime.strptime(newStr, "%Y-%m-%d")
    return date


#主程序:
spark = SparkSession.builder.config(conf = SparkConf()).getOrCreate()

fields = [StructField("date", DateType(),False),StructField("county", StringType(),False),StructField("state", StringType(),False),
                    StructField("cases", IntegerType(),False),StructField("deaths", IntegerType(),False),]
schema = StructType(fields)

rdd0 = spark.sparkContext.textFile("/user/hadoop/us-counties.txt")
rdd1 = rdd0.map(lambda x:x.split("\t")).map(lambda p: Row(toDate(p[0]),p[1],p[2],int(p[3]),int(p[4])))

shemaUsInfo = spark.createDataFrame(rdd1,schema)

shemaUsInfo.createOrReplaceTempView("usInfo")

2)数据分析

本案例主要进行了以下统计分析,分析的目标和方法如下:

(1)统计美国截止每日的累计确诊人数和累计死亡人数。

  • 以date作为分组字段,对cases和deaths字段进行汇总统计。

(2)统计美国每日的新增确诊人数。

  • 因为「新增数=今日数-昨日数」,这里使用自连接,连接条件是t1.date = t2.date + 1,然后使用t1.totalCases – t2.totalCases计算该日新增。

(3)统计美国每日的新增确诊人数新增死亡人数。

  • 因为「新增数=今日数-昨日数」,这里使用自连接,连接条件是t1.date = t2.date + 1,然后使用t1.totalCases – t2.totalCases计算该日新增。

(4)统计截止5.19日,美国各州的累计确诊人数和死亡人数。

  • 首先筛选出5.19日的数据,然后以state作为分组字段,对cases和deaths字段进行汇总统计。

(5)统计截止5.19日,美国确诊人数最多的十个州。

  • 对3)的结果DataFrame注册临时表,然后按确诊人数降序排列,并取前10个州。

(6)统计截止5.19日,美国死亡人数最多的十个州。

  • 对3)的结果DataFrame注册临时表,然后按死亡人数降序排列,并取前10个州。

(7)统计截止5.19日,美国确诊人数最少的十个州。

  • 对3)的结果DataFrame注册临时表,然后按确诊人数升序排列,并取前10个州。

(8)统计截止5.19日,美国死亡人数最少的十个州。

  • 对3)的结果DataFrame注册临时表,然后按死亡人数升序排列,并取前10个州。

(9)统计截止5.19日,全美和各州的病死率。

  • 病死率 = 死亡数/确诊数,对3)的结果DataFrame注册临时表,然后按公式计算。

我们下面基于Spark DataFrame和Spark sql进行统计分析。

# 1.计算每日的累计确诊病例数和死亡数
df = shemaUsInfo.groupBy("date").agg(func.sum("cases"),func.sum("deaths")).sort(shemaUsInfo["date"].asc())

# 列重命名
df1 = df.withColumnRenamed("sum(cases)","cases").withColumnRenamed("sum(deaths)","deaths")
df1.repartition(1).write.json("result1.json")                               #写入hdfs

# 注册为临时表供下一步使用
df1.createOrReplaceTempView("ustotal")

# 2.计算每日较昨日的新增确诊病例数和死亡病例数
df2 = spark.sql("select t1.date,t1.cases-t2.cases as caseIncrease,t1.deaths-t2.deaths as deathIncrease from ustotal t1,ustotal t2 where t1.date = date_add(t2.date,1)")

df2.sort(df2["date"].asc()).repartition(1).write.json("result2.json")           #写入hdfs

# 3.统计截止5.19日 美国各州的累计确诊人数和死亡人数
df3 = spark.sql("select date,state,sum(cases) as totalCases,sum(deaths) as totalDeaths,round(sum(deaths)/sum(cases),4) as deathRate from usInfo  where date = to_date('2020-05-19','yyyy-MM-dd') group by date,state")

df3.sort(df3["totalCases"].desc()).repartition(1).write.json("result3.json") #写入hdfs

df3.createOrReplaceTempView("eachStateInfo")

# 4.找出美国确诊最多的10个州
df4 = spark.sql("select date,state,totalCases from eachStateInfo  order by totalCases desc limit 10")
df4.repartition(1).write.json("result4.json")

# 5.找出美国死亡最多的10个州
df5 = spark.sql("select date,state,totalDeaths from eachStateInfo  order by totalDeaths desc limit 10")
df5.repartition(1).write.json("result5.json")

# 6.找出美国确诊最少的10个州
df6 = spark.sql("select date,state,totalCases from eachStateInfo  order by totalCases asc limit 10")
df6.repartition(1).write.json("result6.json")

# 7.找出美国死亡最少的10个州
df7 = spark.sql("select date,state,totalDeaths from eachStateInfo  order by totalDeaths asc limit 10")
df7.repartition(1).write.json("result7.json")

# 8.统计截止5.19全美和各州的病死率
df8 = spark.sql("select 1 as sign,date,'USA' as state,round(sum(totalDeaths)/sum(totalCases),4) as deathRate from eachStateInfo group by date union select 2 as sign,date,state,deathRate from eachStateInfo").cache()
df8.sort(df8["sign"].asc(),df8["deathRate"].desc()).repartition(1).write.json("result8.json")

3)结果文件

上述Spark计算结果保存.json文件,方便后续可视化处理。由于使用Python读取HDFS文件系统不太方便,故将HDFS上结果文件转储到本地文件系统中,使用以下命:

./bin/hdfs dfs -get /user/hadoop/result1.json/*.json /home/hadoop/result/result1
...

对于result2等结果文件,使用相同命令,只需要改一下路径即可。下载过程如下图所示:

使用Spark分析美国新冠肺炎疫情数据; 将HDFS上结果文件转储到本地文件系统; 10-2

4.数据可视化

1)可视化工具选择与代码

选择使用python第三方库pyecharts作为可视化工具。

在使用前,需要安装pyecharts,安装代码如下:

pip install pyecharts

具体可视化实现代码如下:

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.charts import Line
from pyecharts.components import Table
from pyecharts.charts import WordCloud
from pyecharts.charts import Pie
from pyecharts.charts import Funnel
from pyecharts.charts import Scatter
from pyecharts.charts import PictorialBar
from pyecharts.options import ComponentTitleOpts
from pyecharts.globals import SymbolType
import json

每日的累计确诊病例数和死亡数 → 双柱状图

#1.画出每日的累计确诊病例数和死亡数 → 双柱状图

def drawChart_1(index):
    root = "/home/hadoop/result/result" + str(index) +"/part-00000.json"
    date = []
    cases = []
    deaths = []
    with open(root, 'r') as f:
        while True:
            line = f.readline()
            if not line:                            # 到 EOF,返回空字符串,则终止循环
                break
            js = json.loads(line)
            date.append(str(js['date']))
            cases.append(int(js['cases']))
            deaths.append(int(js['deaths']))

    d = (
    Bar()
    .add_xaxis(date)
    .add_yaxis("累计确诊人数", cases, stack="stack1")
    .add_yaxis("累计死亡人数", deaths, stack="stack1")
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title="美国每日累计确诊和死亡人数"))
    .render("/home/hadoop/result/result1/result1.html")
    )

每日的新增确诊病例数和死亡数 → 折线图

#2.画出每日的新增确诊病例数和死亡数 → 折线图
def drawChart_2(index):
    root = "/home/hadoop/result/result" + str(index) +"/part-00000.json"
    date = []
    cases = []
    deaths = []
    with open(root, 'r') as f:
        while True:
            line = f.readline()
            if not line:                            # 到 EOF,返回空字符串,则终止循环
                break
            js = json.loads(line)
            date.append(str(js['date']))
            cases.append(int(js['caseIncrease']))
            deaths.append(int(js['deathIncrease']))

    (
    Line(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add_xaxis(xaxis_data=date)
    .add_yaxis(
        series_name="新增确诊",
        y_axis=cases,
        markpoint_opts=opts.MarkPointOpts(
            data=[
                opts.MarkPointItem(type_="max", name="最大值")

            ]
        ),
        markline_opts=opts.MarkLineOpts(
            data=[opts.MarkLineItem(type_="average", name="平均值")]
        ),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="美国每日新增确诊折线图", subtitle=""),
        tooltip_opts=opts.TooltipOpts(trigger="axis"),
        toolbox_opts=opts.ToolboxOpts(is_show=True),
        xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
    )
    .render("/home/hadoop/result/result2/result1.html")
    )
    (
    Line(init_opts=opts.InitOpts(width="1600px", height="800px"))
    .add_xaxis(xaxis_data=date)
    .add_yaxis(
        series_name="新增死亡",
        y_axis=deaths,
        markpoint_opts=opts.MarkPointOpts(
            data=[opts.MarkPointItem(type_="max", name="最大值")]
        ),
        markline_opts=opts.MarkLineOpts(
            data=[
                opts.MarkLineItem(type_="average", name="平均值"),
                opts.MarkLineItem(symbol="none", x="90%", y="max"),
                opts.MarkLineItem(symbol="circle", type_="max", name="最高点"),
            ]
        ),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="美国每日新增死亡折线图", subtitle=""),
        tooltip_opts=opts.TooltipOpts(trigger="axis"),
        toolbox_opts=opts.ToolboxOpts(is_show=True),
        xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
    )
    .render("/home/hadoop/result/result2/result2.html")
    )

截止5.19,美国各州累计确诊、死亡人数和病死率—->表格

#3.画出截止5.19,美国各州累计确诊、死亡人数和病死率--->表格
def drawChart_3(index):
    root = "/home/hadoop/result/result" + str(index) +"/part-00000.json"
    allState = []
    with open(root, 'r') as f:
        while True:
            line = f.readline()
            if not line:                            # 到 EOF,返回空字符串,则终止循环
                break
            js = json.loads(line)
            row = []
            row.append(str(js['state']))
            row.append(int(js['totalCases']))
            row.append(int(js['totalDeaths']))
            row.append(float(js['deathRate']))
            allState.append(row)

    table = Table()

    headers = ["State name", "Total cases", "Total deaths", "Death rate"]
    rows = allState
    table.add(headers, rows)
    table.set_global_opts(
        title_opts=ComponentTitleOpts(title="美国各州疫情一览", subtitle="")
    )
    table.render("/home/hadoop/result/result3/result1.html")

美国确诊最多的10个州 → 词云图

#4.画出美国确诊最多的10个州 → 词云图
def drawChart_4(index):
    root = "/home/hadoop/result/result" + str(index) +"/part-00000.json"
    data = []
    with open(root, 'r') as f:
        while True:
            line = f.readline()
            if not line:                            # 到 EOF,返回空字符串,则终止循环
                break
            js = json.loads(line)
            row=(str(js['state']),int(js['totalCases']))
            data.append(row)

    c = (
    WordCloud()
    .add("", data, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
    .set_global_opts(title_opts=opts.TitleOpts(title="美国各州确诊Top10"))
    .render("/home/hadoop/result/result4/result1.html")
    )

美国死亡最多的10个州 → 柱状图

#5.画出美国死亡最多的10个州 → 柱状图
def drawChart_5(index):
    root = "/home/hadoop/result/result" + str(index) +"/part-00000.json"
    state = []
    totalDeath = []
    with open(root, 'r') as f:
        while True:
            line = f.readline()
            if not line:                            # 到 EOF,返回空字符串,则终止循环
                break
            js = json.loads(line)
            state.insert(0,str(js['state']))
            totalDeath.insert(0,int(js['totalDeaths']))

    c = (
    PictorialBar()
    .add_xaxis(state)
    .add_yaxis(
        "",
        totalDeath,
        label_opts=opts.LabelOpts(is_show=False),
        symbol_size=18,
        symbol_repeat="fixed",
        symbol_offset=[0, 0],
        is_symbol_clip=True,
        symbol=SymbolType.ROUND_RECT,
    )
    .reversal_axis()
    .set_global_opts(
        title_opts=opts.TitleOpts(title="PictorialBar-美国各州死亡人数Top10"),
        xaxis_opts=opts.AxisOpts(is_show=False),
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=False),
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(opacity=0)
            ),
        ),
    )
    .render("/home/hadoop/result/result5/result1.html")
    )

找出美国确诊最少的10个州 → 词云图

#6.找出美国确诊最少的10个州 → 词云图
def drawChart_6(index):
    root = "/home/hadoop/result/result" + str(index) +"/part-00000.json"
    data = []
    with open(root, 'r') as f:
        while True:
            line = f.readline()
            if not line:                            # 到 EOF,返回空字符串,则终止循环
                break
            js = json.loads(line)
            row=(str(js['state']),int(js['totalCases']))
            data.append(row)

    c = (
    WordCloud()
    .add("", data, word_size_range=[100, 20], shape=SymbolType.DIAMOND)
    .set_global_opts(title_opts=opts.TitleOpts(title="美国各州确诊最少的10个州"))
    .render("/home/hadoop/result/result6/result1.html")
    )

美国死亡最少的10个州 → 漏斗图

#7.找出美国死亡最少的10个州 → 漏斗图
def drawChart_7(index):
    root = "/home/hadoop/result/result" + str(index) +"/part-00000.json"
    data = []
    with open(root, 'r') as f:
        while True:
            line = f.readline()
            if not line:                            # 到 EOF,返回空字符串,则终止循环
                break
            js = json.loads(line)
            data.insert(0,[str(js['state']),int(js['totalDeaths'])])

    c = (
    Funnel()
    .add(
        "State",
        data,
        sort_="ascending",
        label_opts=opts.LabelOpts(position="inside"),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title=""))
    .render("/home/hadoop/result/result7/result1.html")
    )

美国的病死率—->饼状图

#8.美国的病死率--->饼状图
def drawChart_8(index):
    root = "/home/hadoop/result/result" + str(index) +"/part-00000.json"
    values = []
    with open(root, 'r') as f:
        while True:
            line = f.readline()
            if not line:                            # 到 EOF,返回空字符串,则终止循环
                break
            js = json.loads(line)
            if str(js['state'])=="USA":
                values.append(["Death(%)",round(float(js['deathRate'])*100,2)])
                values.append(["No-Death(%)",100-round(float(js['deathRate'])*100,2)])
    c = (
    Pie()
    .add("", values)
    .set_colors(["blcak","orange"])
    .set_global_opts(title_opts=opts.TitleOpts(title="全美的病死率"))
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
    .render("/home/hadoop/result/result8/result1.html")
    )

#可视化
index = 1
while index<9:
    funcStr = "drawChart_" + str(index)
    eval(funcStr)(index)
    index+=1

2)结果图标展示

可视化结果是.html格式的,reslut1的结果展示图保存路径为“/home/hadoop/result/result1/result1.html”,reslut2的结果展示图保存路径为“/home/hadoop/result/result2/result1.html”,其余类似递推。具体截图如下:

(1)美国每日的累计确诊病例数和死亡数 → 双柱状图

使用Spark分析美国新冠肺炎疫情数据; 美国每日的累计确诊病例数和死亡数; 双柱状图; 10-3

(2)美国每日的新增确诊病例数 → 折线图

使用Spark分析美国新冠肺炎疫情数据; 美国每日的新增确诊病例数; 折线图; 10-4

(3)美国每日的新增死亡病例数 → 折线图

使用Spark分析美国新冠肺炎疫情数据; 美国每日的新增死亡病例数; 折线图; 10-5

(4)截止5.19,美国各州累计确诊、死亡人数和病死率 → 表格

使用Spark分析美国新冠肺炎疫情数据; 美国各州累计确诊、死亡人数和病死率; 表格; 10-6

(5)截止5.19,美国累计确诊人数前10的州 → 词云图

使用Spark分析美国新冠肺炎疫情数据; 美国累计确诊人数前10的州; 词云图; 10-7

(6)截止5.19,美国累计死亡人数前10的州 → 柱状图

使用Spark分析美国新冠肺炎疫情数据; 美国累计死亡人数前10的州; 柱状图; 10-8

(7)截止5.19,美国累计确诊人数最少的10个州 → 词云图

使用Spark分析美国新冠肺炎疫情数据; 美国累计确诊人数最少的10个州; 词云图; 10-9

(8)截止5.19,美国累计死亡人数最少的10个州 → 漏斗图

使用Spark分析美国新冠肺炎疫情数据; 美国累计死亡人数最少的10个州; 漏斗图; 10-10

(9)截止5.19,美国的病死率 → 饼状图

使用Spark分析美国新冠肺炎疫情数据; 美国的病死率; 饼状图; 10-11

参考资料

【大数据技术与处理】推荐阅读

ShowMeAI 系列教程推荐

ShowMeAI用知识加速每一次技术成长

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
13天前
|
数据采集 存储 机器学习/深度学习
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值
46 9
|
2月前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
198 15
|
2月前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
2月前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
3月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
165 4
|
19天前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
180 92
|
3月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
665 7
|
3月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
87 2
|
1月前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
3月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
148 1

热门文章

最新文章