scikit-learn 是最受欢迎的机器学习库之一,它提供了各种主流的机器学习算法的API接口供使用者调用,让使用者可以方便快捷的搭建一些机器学习模型,并且通过调参可以达到很高的准确率。
这次我们主要介绍scikit-learn中k近邻算法(以下简称为KNN)的使用。
KNN是一种非参数机器学习算法(机器学习中通过模型训练而学到的是模型参数,而要人工调整的是超参数,请注意避免混淆)。使用KNN首先要有一个已知的数据集D,数据集内对于任意一个未知标签的样本数据x,可以通过计算x与D中所有样本点的距离,取出与x距离最近的前k个已知数据,用该k个已知数据的标签对x进行投票,哪一类票数最多,x就是哪一类,这是kNN的大概思想,以下举个例子方便理解。
正方形该分到哪个类?
在上图中有2个已知类别——红色五角星和蓝色三角形和一个未知样本——绿色方格。现在我们要用KNN算法对绿色方格进行分类,以判定其属于这两类中的哪一类,首先令k=5,通过计算距离我们可以知道距离绿色方格最近的5个样本中(假设绿色方格位于圆心),有2个红色五角星,3个蓝色三角形。通过投票可知:蓝色三角形得3票,红色五角星得2票,因此绿色方格应该属于蓝色三角形。kNN就是这样工作的。
上图同时也引申出KNN算法的一个重要的超参数——k。举例来说,如果当k=10时,由图可以看出:红色五角星投了6票,蓝色三角形投了4票,因此未知的样本应该属于红色五角星一类。因此,我们可以看出超参数的选择会影响最终kNN模型的预测结果。下面用代码具体展示如何调用scikit-learn使用kNN,并调整超参数。
👆 取鸢尾花数据集两个特征可视化
以上是利用scikit-learn中默认的k近邻模型来预测未知鸢尾花样本的种类(假装未知),我们在实例化模型的过程中并未传入任何的超参数,则kNN模型会使用模型默认的超参数。
例如:
- metric='minkowski' —— 计算样本点之间距离的时候会采用明可夫斯基距离,与p=2等价
- n_jobs=1 —— kNN算法支持cpu多核并行运算;n_jobs=1,默认使用一个核,当n_jobs=-1时,使用所有的核
- n_neighbors=5 —— 表示k=5,即抽取未知样本附近最近的5个点进行投票
- weights='uniform' —— 表示再利用最近的k个点投票时,他们的权重是等价的,当weights='distance'时,表示一个已知样本点距离未知点的距离越小,其投票时所占权重越大
还有一些其他的很重要的超参数,在这里先暂不说明,以下用代码具体展示。
以下用循环来搜索下关于n_neighbors、和p这两个超参数的最优值。
因为我们为了便于可视化,仅使用了鸢尾花数据集中的2个特征,所以导致最终预测的准确率不太高,如果使用该数据集的全部特征来训练模型并预测未知样本,传入最佳超参数的kNN模型,亲测准确度可达100%,当然这与鸢尾花数据集的高质量也有关系。运行以上代码并打印结果可得如上所示。
今天的分享就到这里了,关于kNN还有很多更复杂的超参数的调整,就不一一展示了,请小伙伴们自己在下面亲手操作下,会收获更多哦。kNN思想和实现简单,目前还在机器学习算法的领域持续的发光发热,如果你们中有大神路过,还请高抬贵脚,勿踩勿喷!