ElasticSearch01_简介、安装es以及kibana、详解倒排索引、检索es基本信息、增删改查文档(六)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: ElasticSearch01_简介、安装es以及kibana、详解倒排索引、检索es基本信息、增删改查文档(六)

⑤. ES的批量操作——bulk

这里的批量操作,当发生某一条执行发生失败时,其他的数据仍然能够接着执行,也就是说彼此之间是独立的


实例1: 执行多条数据
POST /customer/external/_bulk
{"index":{"_id":"1"}}
{"name":"John Doe"}
{"index":{"_id":"2"}}
{"name":"John Doe"}
#! Deprecation: [types removal] Specifying types in bulk requests is deprecated.
{
  "took" : 318,  花费了多少ms
  "errors" : false, 没有发生任何错误
  "items" : [ 每个数据的结果
    {
      "index" : { 保存
        "_index" : "customer", 索引
        "_type" : "external", 类型
        "_id" : "1", 文档
        "_version" : 1, 版本
        "result" : "created", 创建
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 0,
        "_primary_term" : 1,
        "status" : 201 新建完成
      }
    },
    {
      "index" : { 第二条记录
        "_index" : "customer",
        "_type" : "external",
        "_id" : "2",
        "_version" : 1,
        "result" : "created",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 1,
        "_primary_term" : 1,
        "status" : 201
      }
    }
  ]
}


实例2:对于整个索引执行批量操作
POST /_bulk
{"delete":{"_index":"website","_type":"blog","_id":"123"}}
{"create":{"_index":"website","_type":"blog","_id":"123"}}
{"title":"my first blog post"}
{"index":{"_index":"website","_type":"blog"}}
{"title":"my second blog post"}
{"update":{"_index":"website","_type":"blog","_id":"123"}}
{"doc":{"title":"my updated blog post"}}
运行结果:
#! Deprecation: [types removal] Specifying types in bulk requests is deprecated.
{
  "took" : 304,
  "errors" : false,
  "items" : [
    {
      "delete" : { 删除
        "_index" : "website",
        "_type" : "blog",
        "_id" : "123",
        "_version" : 1,
        "result" : "not_found", 没有该记录
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 0,
        "_primary_term" : 1,
        "status" : 404 没有该
      }
    },
    {
      "create" : {  创建
        "_index" : "website",
        "_type" : "blog",
        "_id" : "123",
        "_version" : 2,
        "result" : "created",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 1,
        "_primary_term" : 1,
        "status" : 201
      }
    },
    {
      "index" : {  保存
        "_index" : "website",
        "_type" : "blog",
        "_id" : "5sKNvncBKdY1wAQmeQNo",
        "_version" : 1,
        "result" : "created",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 2,
        "_primary_term" : 1,
        "status" : 201
      }
    },
    {
      "update" : { 更新
        "_index" : "website",
        "_type" : "blog",
        "_id" : "123",
        "_version" : 3,
        "result" : "updated",
        "_shards" : {
          "total" : 2,
          "successful" : 1,
          "failed" : 0
        },
        "_seq_no" : 3,
        "_primary_term" : 1,
        "status" : 200
      }
    }
  ]
}


⑥. 样本测试数据(有1000条数据)

https://github.com/elastic/elasticsearch/blob/v7.4.2/docs/src/test/resources/accounts.json


链接:https://pan.baidu.com/s/1my-luYGAsGrCnyxNve_6Hw 
提取码:1234 
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
4天前
Elasticsearch安装配置文件
Elasticsearch安装配置文件
8 0
|
4天前
|
网络协议 Java
elasticsearch7.1 安装启动报错
elasticsearch7.1 安装启动报错
6 1
|
4天前
|
自然语言处理 数据可视化 Linux
ElasticSearch安装ik分词器_使用_自定义词典
ElasticSearch安装ik分词器_使用_自定义词典
7 1
|
4天前
|
安全
【Elasticsearch6】安装笔记
【Elasticsearch6】安装笔记
8 2
|
5天前
|
存储 自然语言处理 网络协议
【elastic search】下载安装、使用教程
【elastic search】下载安装、使用教程
14 1
|
8天前
|
JSON 搜索推荐 大数据
Elasticsearch:从 ES|QL 到 PHP 对象
【6月更文挑战第9天】Elasticsearch 是一款强大的开源搜索引擎,适用于大数据处理和分析。在 PHP 开发中,使用 ES|QL 构建复杂查询后,通常需将查询结果转换为 PHP 对象。通过 `json_decode()` 函数解析 JSON 数据,可以实现这一目标。示例代码展示了如何将 Elasticsearch 响应转换为 PHP 对象并遍历数据。这样,我们可以进一步处理和操作数据,适应不同项目需求。随着技术和方法的更新,不断学习和适应将提升我们在开发中的效率和创新力。
38 10
|
10天前
|
Docker 容器
docker 运行 elasticsearch + kibana + head 集群
docker 运行 elasticsearch + kibana + head 集群
|
10天前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch,帮助你快速搭建起这个强大的工具
【6月更文挑战第7天】本文档详细介绍了如何在Rocky Linux 8上安装和配置Elasticsearch,首先通过添加Elasticsearch仓库并使用yum安装。接着,配置Elasticsearch,包括修改`elasticsearch.yml`、设置内存和文件描述符,以及可选的安全设置。启动Elasticsearch后,通过验证日志和测试连接确保其正常运行。文章还列举了常见问题及解决方法,如启动失败、内存不足和网络问题。按照这些步骤,用户可以在Rocky Linux 8上成功部署Elasticsearch,为数据管理与分析提供强大支持。
30 5
|
24天前
|
自然语言处理 测试技术 网络安全
ElasticSearch7最新实战文档-附带logstash同步方案
ElasticSearch7最新实战文档-附带logstash同步方案
23 0
|
24天前
|
监控 应用服务中间件 nginx
使用 Docker Compose V2 快速搭建日志分析平台 ELK (Elasticsearch、Logstash 和 Kibana)
ELK的架构有多种,本篇分享使用的架构如图所示: Beats(Filebeat) -> -> Elasticsearch -> Kibana,目前生产环境一天几千万的日志,内存占用大概 10G
60 4