NIPS举办了第一场记者发布会:请媒体警惕这波AI热潮

简介: 面对记者,NIPS 大会传达了很明确的信息——请不要妖魔化机器学习。

今年落户长滩的 NIPS(神经信息处理系统进展大会)做出了很多新的尝试——开设了五个比赛单元;增加除 Oral 和 Poster 之外的 Spotlight 环节;更多企业和初创公司进入到 NIPS 大会开设展台;以及,NIPS 首次邀请了记者参会。


美国时间周二,七位正襟危坐的学者,和来自美国各大主流报媒的记者,组成了 NIPS 有史以来的第一次记者发布会。


但是,这场记者发布会的氛围格外的……奇怪。


这种奇怪的感觉或许源于一种极其不自然的交流:一边是埋头呆在实验室里的机器学习研究员,另一边是急于挖掘人工智能大新闻的记者,他们的背景不同,想法不同,在这场记者发布会上交流的内容也不尽相同。


平心而论,学者们其实有很多话想要在记者面前倾诉。在大会主席 Isabelle Guyon 和 Ulrike von Luxburg 介绍完 NIPS 的基本信息后,发布会也邀请了五位参会的学者分别对自己论文进行解读。这些由大会精心挑选出来的论文,尽管不是获奖论文,但都通过机器学习的方法,解决了非常重要的问题。比如由 Matt Kusner 和 Joshua Loftus 提出的 Casual Model 能够解决机器学习模型中存在的偏见:为什么面部识别更容易识别白人而不是黑人,又或者自然语言系统出现针对女性的性别歧视言论。


然而,并没有多少记者对论文的内容和其影响提问;相反,记者们更愿意关心机器学习或者大众所理解的人工智能是否会对社会、经济、工作、移民等方面产生深远的影响。「深度学习会如何影响工作和经济?」「GPU 和深度学习到底能改变什么?」这些问题又超出了学者们的研究范围。


于是,字里行间,冲突、偏见、矛盾、交锋,都出现在这场 NIPS 记者发布会上。


AlphaGo 只是完成了目标


机器学习没有魔法,目前的机器学习也没有产生革命性的影响,这是大会主席 Isabelle Guyon 所坚守的观点。


这位来自法国 Paris-Saclay 大学、研究机器学习和生物学的教授,非常警惕如今的这波 AI 热潮:这是一场泡沫,而且迟早会破灭。


「目前所应用的大部分算法,20 年前都已经有了。只不过我们很幸运,赶上了算力达到了一定的标准,让很多需要大量数据的算法有了实现的可能。」


而另一位参加记者发布会的学者、获得今年 NIPS Tme of Award(时间检验奖)的加州大学伯克利分校教授 Benjamin Recht 则直接拿起了 AlphaGo 开涮,来说明人们对人工智能的过分高估。他提到了多年前的一个小插曲:在 2007 年的 ICML 大会上,当时还没有创立 DeepMind 的 David Silver 就曾说解决围棋电脑只需要 10 年时间,那时候,深度学习、强化学习都还没有进入大众的视野。


显然,Silver 的时间掐得很准。2016 年,来自 DeepMind 的 AlphaGo 一战成名,在首尔击败了曾经的世界第一围棋高手李世石。而第二年,AlaphGo 的进化体 Master 又击败了前世界第一柯洁(柯洁最近刚刚失去了世界第一的宝座)。但在 Recht 看来,DeepMind 只是完成了既定目标罢了。


「我依然记得当年深蓝击败国际象棋大师 Garry Kasparov,那很震撼。」Recht 回忆道。但画风一转,他说,「这么多年人工智能一直在游戏里击败人类,但似乎没有什么事情发生改变。」


学者们和媒体的冲突


Recht 不喜欢像 NIPS 这样的学术大会举办记者发布会。


发布会上,Recht 拿出了一篇来自纽约时报 1958 年的报道。这篇文章主要讲述了美国海军透露了目前电子计算机的胚胎,预计将能够对话、走路;他们能够复制自身,并且可以意识到自己的存在;他们将构建第一台能够读写的感知机,预计将在一年内完成,成本为十万美元。


50 年前,纽约时报就在报道人类能发明拥有高等智能的机器;如今,你依然在各大媒体上能够看到这些内容。人类不断地在研发高等智能,但是不断的失败。这当然有机器学习技术本身的局限性,但 Recht 认为媒体的夸大说辞也需要承担一部分责任。


与其说是媒体人背锅,不如说是这两个群体天生的信息不对称。


学者们不知道记者对于机器学习和人工智能的认识有多久,这成为了发布会上显而易见的「偏见」。在另一位大会主席 Ulrike von Luxburg 短短三分钟的演讲里,她提到了三次「机器学习不是人工智能,尽管他们在某种程度上很接近。」


同样,记者所想要的答案也并非是这些学者能够回答。当来自经济学人的记者提出「你能说服我深度学习是否能真正改变社会和经济「的问题时,台上的学者面面相觑,Guyon 甚至尴尬地笑着说「你能再问一个更好的问题吗」。显然,他们的任务是研究机器学习在某一个特定问题上如何取得更好的效果,而不是来研究这些技术到底会对社会产生怎么样的经济影响。


这种信息不对称,造成了答非所问,造成了记者和学者之间的交锋。记者希望获得直接明了的答案,而往往用尽数十年来证明某个算法是否有效的学者们最忌讳给出简单的答案。


NIPS 似乎还没有做好迎接媒体进入大会的准备。


敞开大门的 NIPS,有利有弊


而在今年大会上,另一个令人关心的问题是:包括 Facebook、Amazon、Intel、Nvidia,以及来自中国的百度、腾讯、爱丽爸爸都入驻 NIPS 大会,不少非学术圈的人也来到了 NIPS,这极大地改变了 NIPS 设立的初衷。学者们对此是怎么看的?NIPS 委员会又该如何平衡商业化操作和学术会议的环境。


四年前在美国内华达 Lake Tahoe 举办的 NIPS 大会不过 2000 人,而今年已经涨到了 8000 多人。根据 NIPS 委员会的计算,按照这个趋势,到了 2035 年,参加 NIPS 大会的人会超过世界的总人口。不少学者都或多或少地「抱怨」,看 poster(论文海报)的大厅人山人海,入选 NIPS 的 679 篇论文哪里扫的过来。


微信图片_20211129141038.jpg

Dynamic Routing Between Capsules 的论文海报前,人满为患。


对不少年轻的学者来说,这是一件好事。参加发布会的、来自纽约大学的助理教授 Joshua Loftus 就直言,他很喜欢工业界的人愿意关心他的工作,这让他的论文可以有更大的影响力。


「我们和那些真正部署应用的公司进行交流,让他们能够用我们的技术做出一些工具,解决工业的问题。」


同样,Gugyon 也很欣喜地看到工业界对如今生物学、认知科学和机器学习的热情。人工智能在历史上经历过两次大的起伏,而 Gugyon 经历过 80 年代人工智能的热潮和 90 年代无人问津的惨况,这让她特别珍惜工业界所带来的机会。


但 Recht 持保守意见。「我对这些公司的权力感到震惊,其中一些公司塑造或主导了辩论。我感到惊讶的是他们觉得他们只是想在某种意义上购买学术人才,以此减少学术界的影响,我认为这是非常目光短浅。同时,他们似乎不关心他们早期部署的机器学习技术会带来什么后果。我很担心这些在公共场合宣传的人工智能会转移机器学习领域的科学家们真正需要解决的问题。」


Recht 很在意机器学习的方法是不是真的能够解决问题而不是误导一些研究方向。今年,他的一篇论文《The Marginal Value of Adaptive Gradient Methods in Machine Learning》被 NIPS 收录,这篇论文研究了在训练深度神经网络中非常流行的自适应优化方法(adaptive optimization methods),在比较了几种最先进的深度学习模型中自适应方法的经验泛化能力。他发现,自适应方法找到的解决方案普遍比 SGD 更差(通常明显更差),即使这些解决方案具有更好的培训效果。


NIPS 大会正在做出改变,这个位于象牙塔的学术会议正在一步步打开它的大门,让更多非学术圈的人士接触最前沿的科研进展。这种转变势必带来一些曲折,比如这场记者发布会。学者们害怕这场 NIPS 大会也成为了媒体笔下的又一个通往通用人工智能的大会。


发布会结束后,机器之心记者有幸和一旁的来自 MIT Technology Review 的 Will Knight 聊了两句。「有趣的是这里的人似乎不知道人工智能究竟带来了怎么样的增长,而在中国,没有人觉得人工智能是个伪命题。」


常年在中国报道人工智能相关故事 Knight 见证了中国人工智能力量的发展,就在今年,他撰写了一篇 China's AI Awakening 中国人工智能的崛起 。相比特朗普政府在美国科技圈的无作为,甚至是对移民和签证的更加严苛,中国政府的大力支持让他非常惊讶和好奇。


「也许这(这场记者发布会)是一个非常独特的西方玩意儿。」Knight 开玩笑地说。

相关文章
|
2月前
|
人工智能 自然语言处理 数据可视化
AI视频培训|格律诗AI 视频创作与自媒体传播——某诗词学会
近日,TsingtaoAI派驻专家团队为某诗词学会学员交付《格律诗AI 视频创作与自媒体传播》培训。本课程精准切中行业痛点——传统诗词创作与现代传播方式的断层。课程摒弃泛泛而谈,直击实操:首日聚焦"工具认知+创作逻辑",系统梳理即梦、可灵等国产AI工具在格律诗意象可视化中的差异化应用,如将"月光在指尖碎裂"转化为动态场景;次日深入"语音表达+自媒体运营",传授用魔音工坊生成情感化配音、坤行数字人打造诗人形象的秘技,更结合抖音、小红书平台特性,解析"前5秒高光片段设计"等流量密码。
64 3
|
18天前
|
存储 消息中间件 人工智能
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
64 11
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
|
5月前
|
人工智能 算法 安全
AI智能体热潮下,打工人如何抢占未来职场先机?
当AI成为生活与工作的基础设施,生成式人工智能认证(GAI认证)为职场人提供了应对变革的关键工具。文章从AI智能体浪潮引发的职业革命出发,分析了技能需求重构、职业边界模糊及伦理责任升级的趋势,强调GAI认证通过系统性知识框架、全球认可的权威性和技术伦理教育,帮助个人从“工具使用者”转型为“规则制定者”。无论是传统行业从业者还是技术专家,GAI认证都能提升其在AI时代的竞争力,成为职业发展的护城河与未来入场券。掌握AI不是选择,而是必然,而GAI认证正是通向未来的桥梁。
|
7月前
|
机器学习/深度学习 人工智能 算法
从春招“AI热潮”看科技变革中的就业新趋势
随着2025年春招市场的火热,人工智能(AI)相关岗位成为求职焦点。AI技术的快速发展不仅催生了大量新兴职业,还推动了就业市场的转型。从传统岗位的自动化替代到新职业的涌现,AI正深刻改变着职业结构与就业形态。面对这一变革,求职者需主动学习AI技能、培养跨界能力并关注新兴领域。生成式人工智能认证(GAI认证)更成为提升竞争力的关键。同时,企业应加大AI技术研发投入,构建人才生态,推动技术与业务深度融合,共同开创人机协作的新未来。
|
8月前
|
机器学习/深度学习 人工智能 搜索推荐
上百万智能体在OASIS模拟平台上玩推特,AI玩社交媒体和真人有多像?
OASIS是一个模拟平台,利用大型语言模型(LLM)驱动的智能体模拟社交媒体上的行为,研究复杂社会系统现象。它模仿推特和Reddit等平台,支持动态环境、多样行动和推荐系统。通过模拟上百万个智能体,OASIS帮助研究人员大规模分析信息传播和社会互动,但仍面临规模、行为多样性及伦理隐私挑战。论文:https://arxiv.org/abs/2411.11581
283 6
|
9月前
|
数据采集 人工智能 自然语言处理
Riona-AI-Agent:自媒体 AI 代理!自动点赞、评论、个性化内容生成和发布等交互任务
Riona-AI-Agent 是一款基于 Node.js 和 TypeScript 的 AI 自动化工具,支持 Instagram、Twitter 等平台的自动化交互,生成高质量内容,提升社交媒体管理效率。
623 13
Riona-AI-Agent:自媒体 AI 代理!自动点赞、评论、个性化内容生成和发布等交互任务
|
6月前
|
数据采集 人工智能 自动驾驶
AI大模型都有的“幻觉病”,企业AI应用创新路上须警惕
法思诺创新提醒:AI大模型虽强大,但其“幻觉病”不容忽视。文章剖析了AI生成错误信息的现象及其成因,包括数据质量问题、缺乏常识理解及追求流畅度的倾向,并警示企业在医疗、法律、金融等关键领域应用AI时需警惕潜在风险。为应对挑战,应通过技术改进、人机协同和伦理规范三重手段约束AI行为,同时强调企业应以人为主导,将AI作为辅助工具,在享受技术便利的同时有效控制风险。
268 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
2025春招市场迎AI热潮:生成式人工智能(GAI)认证如何重构人才竞争力
随着科技发展,人工智能(AI)已深入生活各领域。2025年春招市场见证了AI人才需求激增,生成式人工智能(GAI)成为新焦点。GAI通过学习数据生成新内容,在文学、艺术、营销等领域展现广阔前景。企业日益重视技能认证,GAI认证助力职场人士提升竞争力、规划职业路径,契合终身学习理念。在全球化竞争中,GAI认证提供国际化机会,推动个人成长与职业发展。未来,拥有GAI认证的求职者将在职场中脱颖而出。
|
7月前
|
人工智能 自动驾驶 安全
“AI +”岗位热潮下,生成式人工智能认证开启职业新篇
随着“AI+”岗位的兴起,人工智能技能成为就业市场热门需求。清华大学春招现场显示,众多企业增加AI相关岗位,如自动驾驶、AI技术专家等,反映行业强劲趋势。生成式人工智能认证(GAI认证)由培生推出,涵盖AI技术、伦理与法律等方面,助力求职者提升竞争力。通过学习GAI课程,学员可掌握主流AI工具使用方法,适应职业新需求。认证获Mindstone认可,内容贴合实际应用,为个人职业发展提供有力支持。
|
9月前
|
人工智能 自然语言处理 算法
“破冰”探索两周年,AI和媒体碰撞出了什么火花?
2022年末,大模型浪潮席卷新闻媒体行业,引发内容生产方式的深刻变革。2023年1月,传播大脑科技公司在杭州成立,成为浙江新闻传媒领域的重要探索。两年后,大模型技术进一步重构新闻生产和分发逻辑,传播大脑通过整合资源、打破壁垒,推出了国内首个媒体垂类大模型,并在全国范围内推广“浙江模式”,助力多省份媒体融合进程。2025年初,传播大脑在智能化办公、内容创作和形式创新等方面取得显著成果,为媒体行业的未来提供了新的解决方案和启示。
170 14

热门文章

最新文章