MongoDB 和 AI 赋能行业应用:电信和媒体

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 在本系列的下一篇文章中,我们将讨论 MongoDB + AI 在零售行业的应用

欢迎阅读“MongoDB 和 AI 赋能行业应用”系列的第二篇。

本系列重点介绍 AI 应用于不同行业的关键用例,涵盖制造业和汽车行业、金融服务、零售、电信和媒体、保险以及医疗保健行业。

电信行业的经营环境以利润空间狭小为特点,尤其是在差异化极小的商品化通信和连接服务领域。由于语音、数据和互联网接入等服务大体同质化,电信公司需要差异化和多样化的收入流来创造价值,并在市场中脱颖而出。

随着数字原生企业以灵活创新的方式颠覆传统商业模式,老牌公司不仅要相互竞争,还要与新公司竞争,以提供更好的客户体验,适应不断变化的消费者需求。

如今人们越来越期待更加高级的交互方式,电信运营商为了保持蓬勃发展,必须优先考虑其运营支持系统(OSS)和业务支持系统(BSS)的成本效率,提高客户服务标准,并增强整体客户体验,以确保市场份额并获得竞争优势。不仅是电信运营商,媒体出版商也必须通过自动化来简化运营,同时加强与读者的互动,使读者愿意为个性化的相关内容付费。

服务保障

电信运营商需要以最佳质量和性能水平提供网络服务,以满足客户期望和服务水平协议。服务保证的主要方面包括性能监控、服务质量(QoS)管理和预测分析,以预测潜在的服务降级或网络故障。随着电信网络的复杂性不断增加,客户对高质量、始终在线服务的期望也越来越高,这就为服务保证设定了新的标准,要求企业大力投资能够自动优化这些流程并保持竞争优势的解决方案。

人工智能(AI)通过几个关键能力彻底改变了服务保障:

●机器学习(ML)可以作为预测性维护的有力基础,分析模式并预测网络故障,从而实现先发制人的维护,大幅减少停机时间;
●AI 技术可以通过复杂的网络系统进行筛选,准确找出问题的根本原因,提高故障排除工作的效率;
●AI 技术还可以通过网络优化、分析日志数据以识别改进机会,提高效率,从而降低运营成本。

MongoDB 基于 JSON 的文档模型是支撑智能应用的理想数据基础。它使开发人员能够存储来自各种系统的日志数据,而无需耗费大量时间进行前期数据规范化工作。它还能灵活处理各种不同的数据结构,即使这些数据结构会随时间而变化。

通过使用适当的 ML 模型对数据进行向量化,可以反映健康的系统状态,并识别包含异常系统行为的日志信息。通过 MongoDB 的 Vector Search 能力,可以有效地进行所需的 K-近邻算法 (KNN)搜索,并将其作为 MongoDB 开发人员数据平台的一项完整服务。最后,通过使用 LLM,有关错误的信息(包括根本原因分析)可以用自然语言表达,从而使负责维护的工作人员更容易理解和解决问题。

欺诈检测和预防

如今,电信运营商正在利用一系列先进的技术来检测和预防欺诈,并不断根据威胁者的动态特征进行调整。检测欺诈的常规活动包括跟踪异常呼叫趋势和数据使用情况,以及防范 SIM 卡交换事件(一种经常用于身份盗用的方法)。为防止欺诈,可以在不同层面采取各种策略,包括在 SIM 卡交换过程中对新客户进行严格验证、对风险较高的交易进行严格验证、根据每个客户特有的风险状况采取应对措施等。

ML 为电信公司提供了解决方案:

●通过在呼叫详情记录等历史数据上训练 ML 模型来增强其欺诈检测和预防的能力;
●模型可以评估每个客户的个人风险状况,根据其特定的使用模式定制检测和预防策略;
●模型还可以随着时间的推移进行调整,从新数据和新出现的欺诈策略中学习,从而实现自动的实时检测和欺诈预防,减少人工检查,加快响应速度。

为了进行准确的欺诈检测,需要考虑许多数据维度,而反应时间是防止最糟糕情况发生的关键因素。因此,解决方案还必须支持快速、亚秒级的决策。通过使用适当的 ML 模型向量化数据,可以定义正常的业务状态,并反过来识别偏离正常状态的行为,例如可疑的用户活动。除了 Vector Search,MongoDB Query API还支持流处理,简化了来自各种来源的数据摄取并实时检测欺诈。

内容挖掘

从流媒体服务到在线出版物等,当今的媒体机构都需要提供高度个性化的内容。观众希望根据自己的兴趣获得智能推荐内容。

使用人工智能可以显著增强下一篇最佳阅读文章或流媒体节目的推荐效果。内容个性化最强大的实现方式是跟踪用户的行为,例如搜索了哪些内容、内容浏览了多长时间以及搜索属于哪些类别。根据这些参数,可以给用户推荐相似的内容,或者采取另一种策略,显示门户网站中未显示区域的内容,以便用户发现新的媒体类型,并发掘自己的喜好。

为了在对的时间向对的人提供最合适的内容,自动化系统需要维护大量的信息,从而为合理的建议奠定基础。有了 MongoDB 及其文档模型,所有必要的数据点都可以轻松灵活地存储在用户配置文件、内容和媒体中。最终,经过内容向量化,可以使用 MongoDB 的 Vector Search 构建一个更强大的内容推荐系统,它允许进行内容相似性搜索,不再局限关键词匹配或标签匹配。

其他用例

● 差异化定价:通过进行 A/B 测试并使用 ML 算法分析数据,深入了解客户为内容或服务的消费意愿。这种方法有助于采用动态定价模式,而不是拘泥于标准价格表,从而提高收入并增加付费客户群。
●内容摘要和重组:为撰稿人量身设计一款智能助手,能够为内容摘要提供自动建议、识别合适的搜索引擎优化(SEO)关键词、针对不同的受众调整文章内容。
●搜索生成体验(SGE):提供更动态、个性化和结合语境的搜索结果,让信息检索更高效、更实用,还可以进一步对检索信息进行总结和解释。

总结

总之,在商品化服务和颠覆性市场力量的冲击下,电信行业面临着多样化和收入差异化的挑战。为了保持蓬勃发展,电信运营商必须优先考虑成本效益、提升客户服务和增强体验。利用人工智能,MongoDB 可提供服务保证、欺诈检测和内容挖掘等解决方案,使企业能够驾驭复杂的数字环境、进行创新并提供增值服务。从预测性维护到个性化内容推荐,MongoDB 是电信和媒体公司可以信任的帮手,可在快速发展的市场中提高效率、敏捷性和竞争力。

以上是本篇的全部内容,在本系列的下一篇文章中,我们将讨论 MongoDB + AI 在零售行业的应用。

阿里云 MongoDB。敬请期待阿里云 MongoDB 的检索和向量新特性。
https://www.aliyun.com/product/mongodb?utm_content=g_1000376457

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
4天前
|
人工智能 数据挖掘 大数据
“龟速”到“光速”?算力如何加速 AI 应用进入“快车道”
阿里云将联合英特尔、蚂蚁数字科技专家,带来“云端进化论”特别直播。
43 11
|
18天前
|
开发框架 人工智能 Java
破茧成蝶:传统J2EE应用无缝升级AI原生
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
破茧成蝶:传统J2EE应用无缝升级AI原生
|
4天前
|
机器学习/深度学习 数据采集 人工智能
快瞳AI鱼类识别 —— AI赋能海洋生物智能监测
鱼类AI识别技术基于深度学习算法,通过大量鱼类图像训练,实现对鱼类的快速精准识别。该技术模仿人类视觉系统,利用卷积神经网络(CNN)提取鱼体特征,从浅层的鳞片纹理到深层的整体形态逐步分析。快瞳科技提出的MF-Net模型突破了鱼类种类繁多、数据不均衡等难点,通过多阶段特征融合、动态权重调整及三维特征建模,显著提升识别性能。这项技术不仅重塑水产科研方式,还为海洋生物多样性保护提供智能化解决方案,推动AI在生态保护领域的应用迈入新阶段。
|
5天前
|
开发框架 人工智能 Java
破茧成蝶:阿里云应用服务器让传统 J2EE 应用无缝升级 AI 原生时代
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
|
15天前
|
数据采集 人工智能 大数据
演讲实录:中小企业如何快速构建AI应用?
AI时代飞速发展,大模型和AI的应用创新不断涌现,面对百花齐放的AI模型,阿里云计算平台大数据AI解决方案总监魏博文分享如何通过阿里云提供的大数据AI一体化平台,解决企业开发难、部署繁、成本高等一系列问题,让中小企业快速搭建AI应用。
|
15天前
|
人工智能 搜索推荐 API
AI赋能大学计划·大模型技术与应用实战学生训练营——华东师范大学站圆满结营
4月24日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行大模型应用实战学生训练营——华东师范大学站圆满结营。
56 2
|
17天前
|
人工智能 自然语言处理 监控
LongPort MCP:证券业首个券商MCP,AI赋能智能投资新时代,散户也能玩转机构级交易
LongPort MCP是长桥集团推出的证券行业首个券商模型上下文协议,通过标准化接口实现AI与金融服务的无缝对接,支持自然语言交互的智能投资服务。
209 8
LongPort MCP:证券业首个券商MCP,AI赋能智能投资新时代,散户也能玩转机构级交易
|
15天前
|
开发框架 人工智能 Cloud Native
破茧成蝶:阿里云应用服务器让传统J2EE应用无缝升级AI原生时代
一场跨越20年的技术对话:在杭州某科技园的会议室里,一场特殊的代码评审正在进行。屏幕上同时展示着2005年基于WebLogic开发的供应链系统和2025年接入DeepSeek大模型的智能调度方案——令人惊叹的是,二者的核心业务代码竟保持着惊人的一致性。"我们保住了20年积累的238个核心业务对象,就像修复传世名画时保留了每一笔历史痕迹。"企业CTO的感慨,揭开了阿里云应用服务器助力传统系统智能化转型的奥秘。
56 13
|
23天前
|
人工智能 自然语言处理 IDE
通义灵码:AI赋能编程,开启智能开发新时代
通义灵码是阿里云推出的一款专为开发者设计的智能编程助手,基于自主研发的大模型打造。它不仅具备代码生成、智能补全、代码优化和实时调试等功能,还通过垂直领域深度训练、多语言全栈支持以及与主流IDE无缝集成,大幅提升开发效率。真实案例显示,通义灵码可显著减少编码时间和错误率,助力开发者专注于业务逻辑。未来,它还将进一步理解业务需求、参与代码评审和跨团队协作,重新定义软件开发范式。立即体验,让AI赋能每一行代码!
114 8
|
14天前
|
人工智能 算法
中国AI应用排行榜3月榜单发布,「AI四大天王」格局正式形成
2025年3月,中国AI应用排行榜发布!由AIGCRank制作,基于国内主流App市场及算法备案数据筛选200+款代表性AI应用排名。榜单显示夸克、DeepSeek、豆包、腾讯元宝形成“AI四大天王”格局,头部生态壁垒加深。通用助手主导市场,垂类赛道如教育、生成工具等多点开花。报告揭示中国AI市场进入“头部固化+垂类爆发”阶段,未来商业化路径将成为垂类应用突破关键。
84 0