国内唯一!阿里云智能客服入选《IDC MarketScape全球对话式AI平台厂商评估报告》

简介: 阿里云智能客服成为国内唯一入选IDC全球MarketScape报告解决方案提供方,且取得Major Players位置。

日前,国际权威研究机构IDC发布了《IDC MarketScape 全球对话式AI平台厂商评估报告》,阿里云智能客服以突出的多轮对话能力、低代码可视化操作、自训练的语义模型等产品技术优势,以及阿里业务规模和丰富场景下积累的领域经验和应用,成为国内唯一入选IDC全球MarketScape报告解决方案提供方,且取得Major Players位置。


image.png

 

IDC在报告称,阿里云智能客服具备一系列领先优势:具备内置的FAQ、任务式问答、知识图谱以及表格问答引擎,可以灵活支持单轮和多轮对话;完善的快速冷启动和高效部署的工具集,可支持低代码可视化操作,为开发人员和生态ISV提供开放的API与客户系统(CRM)或数据平台做深度集成。


“如果正在寻找一家功能强大,久经考验的厂商合作对话式AI应用,尤其是在亚洲,应考虑阿里云智能客服。”IDC在报告中建议其客户。


阿里云智能客服的核心算法来自达摩院对话智能团队, 2017年开始团队从0打造了阿里云智能客服的整套核心引擎,目前整个对话引擎的主要架构如下图:


image.png

 

在任务型对话方面,打造了面向第三方开发者的对话开发平台Dialog Studio,目前该平台为云(阿里云智能客服)、钉钉(钉钉官方智能工作助理)、阿里经济体(手淘等数十个BU)等业务提供海量的人机对话服务,疫情期间基于该平台的疫情外呼机器人为全国24个省提供1800+次外呼服务,荣获人民网人民战疫一等奖。


在将Dialog Studio大量落地应用于各个行业领域的过程中,主要面临着两个挑战:第一个是在涉及多行业、场景分散的toB业务中,怎么能解决低资源小样本下的语言理解问题;第二个是如何把多轮对话管理(Dialog Management)从业界普遍的状态机推进到深度学习模型,让多轮对话具备持续学习的能力。


在低资源的语言理解方面,我们在业界和学术界,率先将few-shot learning引入到人机对话领域,并且从人类的小样本学习机制出发,提出了归纳网络(Induction Network1】)和记忆网络(Dynamic Memory Induction Network2】),分别发表在EMNLP2019ACL2020上,这两篇论文目前的引用量在90左右,为该方向的典型论文;在多轮对话管理方面,我们引入了用户模拟器,把用户模拟器和对话系统结合在一起,通过两者之间的Self-Play产生海量的标注数据来解决数据难题,从而实现了对话管理从状态机到模型的进步,并且进一步提出了Meta-Dialog Model3】,解决多轮对话数据的迁移学习问题,相关成果发表在ACL2020上。


在表格问答方面,这里通过一个例子来介绍TableQA。首先有一个理财产品的Table,围绕这个Table, 用户可能会问:收益率大于3.5%且保本型的理财产品最低起投金额是多少?,要想解决这个问题,需要先把自然语言转换成一个SQL语句,然后用SQL语句去查询表格,最终就可以回答这个问题。


TableQA是最近两年里发展最快的一种问答方式。从2017年开始重新被发掘出来,2019年的时候这个方向的研究开始加速,达摩院对话团队也是在2019年启动了对TableQA的研究。经过过去一年多的发展,目前我们在国际四大数据集(榜单)上都取得了第一名的成绩,整体处于国际领先位置。


image.png

在图谱问答方面,系统打造了从文档到图谱的整条低成本构建链路和产品,在运营商、保险、政务行业提供基于图谱的问答服务,实现从文档中构件图谱并问答的整套低成本构建体系。


知识图谱问答(KBQA)是指通过语义理解模型将用户输入的query解析成sparql查询语言,并从构建的图谱中自动查询得到用户答案。达摩院对话团队自成立后即2018年启动了对KBQA的研发。经过3年的发展,目前我们在国际公开数据集ComplexWebQuestions FreebaseLeaderBoard上排名第一,超过Google 4.1% ;并在QALD-8LcQuAD 2.0 取得SOTA结果。目前,已支持运营商、政务、金融等多个行业的业务。


此外,为了降低KBQA的标注成本,将图谱中知识融入到预训练模型KGBert中。基于KGBertKBQA模型只需为每个属性配置20条话术,准确率即可达到80%以上。此外我们在FewClue公开榜单和CCF举办的《预训练模型知识量度量》比赛中均获得了第一名。


作为面向ToB的产品,阿里云智能客服在低代码开发方面也走在业界前列。其中在2017年推出的任务型对话引擎Dialog Studio,就采用了low-code的设计思路,将对话抽象为“用户说、机器想、机器说”三类基础节点,通过拖拽式连线即可实现任务型对话的构建。


image.png


阿里云智能客服于2015年试运行,最早主要为商家提供智能客服能力以缓解大促期间巨大的服务压力。2016年,逐步赋能阿里巴巴生态圈如Lazada、盒马、阿里健康等事业部 。2017年正式对外向政府、企业和开发者开放。


截止当前,阿里云智能客服已围绕客户服务的全链路场景,打造了智能对话机器人、智能质检、智能对话分析、智能策略中心、智能辅助、智能外呼等产品家族,为10万付费企业提供了对话式AI相关服务,在制造、零售、金融、交通、通信、政务等近20行业沉淀了成熟的解决方案和客户案例。


6月份发布的IDC《中国AI云服务市场2020年度市场研究报告》,阿里云公有云对话式AI产品已占据40%的市场份额,位居首位,接近二三名的市场份额之和。


image.png


参考文献:

【1】Ruiying Geng, Binhua Li, Yongbin Li, Xiaodan Zhu, Ping Jian, Jian Sun, Induction Networks for Few-Shot Text Classification, EMNLP 2019.

【2】Ruiying Geng, Binhua Li, Yongbin Li, Jian Sun, Xiaodan Zhu, Dynamic Memory Induction Networks for Few-Shot Text Classification, ACL 2020.

【3】Yinpei Dai, Hangyu Li, Chengguang Tang, Yongbin Li, Jian Sun, Xiaodan Zhu, Learning Low-Resource End-To-End Goal-Oriented Dialog for Fast and Reliable System Deployment, ACL 2020.

【4】Guanglin Niu, Yang Li, Chenguang Tang, et al. Relational Learning with Gated and Attentive Neighbor Aggregator for Few-Shot Knowledge Graph Completion[J]. arXiv preprint arXiv:2104.13095, 2021.

【5】Taolin Zhang, Zerui Cai, Chengyu Wang, et al. HORNET: Enriching Pre-trained Language Representations with Heterogeneous Knowledge Sources[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 2021: 2608-2617

相关文章
|
15天前
|
人工智能 数据管理 API
阿里云百炼又获大奖!阿里云百炼入选 2024 最受开发者欢迎的 AI 应用开发平台榜15强
2024年最受开发者欢迎的AI应用开发平台榜单发布,阿里云百炼入选15强。持续推动AI开发者生态建设,提供开放平台、培训支持、行业解决方案,注重数据安全与合规,致力于生态合作与共赢,加速企业数智化转型。
|
8天前
|
人工智能 数据可视化 JavaScript
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
NodeTool 是一个开源的 AI 工作流可视化构建器,通过拖放节点的方式设计复杂的工作流,无需编码即可快速原型设计和测试。它支持本地 GPU 运行 AI 模型,并与 Hugging Face、OpenAI 等平台集成,提供模型访问能力。
59 14
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
|
22天前
|
人工智能 自然语言处理 前端开发
Lobe Vidol:AI数字人交互平台,可与虚拟人和3D模型聊天互动
Lobe Vidol是一款开源的AI数字人交互平台,允许用户创建和互动自己的虚拟偶像。该平台提供流畅的对话体验、丰富的动作姿势库、优雅的用户界面设计以及多种技术支持,如文本到语音和语音到文本技术。Lobe Vidol适用于娱乐互动、在线教育、客户服务、品牌营销和社交媒体等多个应用场景。
85 7
Lobe Vidol:AI数字人交互平台,可与虚拟人和3D模型聊天互动
|
7天前
|
人工智能 程序员 数据库
AI客服会完全替代人工客服吗
本文介绍了AI客服的应用和发展,包括作者亲身搭建AI客服的经历,以及AI客服在提供24小时服务、快速响应客户需求、精准回答问题等方面的优势。文中还提到了构建AI总结助手、客户对话分析和智能导购助手的具体应用场景,展示了AI客服在提高工作效率、降低成本和优化用户体验方面的潜力。最后,文章讨论了AI客服替代人工客服的可能性及其局限性,强调应结合两者优势共同提升服务质量。
|
25天前
|
存储 自然语言处理 关系型数据库
基于阿里云通义千问开发智能客服与问答系统
在企业的数字化转型过程中,智能客服系统已成为提高客户满意度和降低运营成本的重要手段。阿里云的通义千问作为一款强大的大语言模型,具有自然语言理解、对话生成、知识检索等能力,非常适合用来开发智能客服与问答系统。 通过本博客,我们将演示如何基于阿里云的通义千问模型,结合阿里云相关产品如函数计算(FC)、API网关、RDS等,搭建一个功能齐全的智能客服系统。
79 5
|
1月前
|
存储 人工智能 弹性计算
阿里云弹性计算(ECS)提供强大的AI工作负载平台,支持灵活的资源配置与高性能计算,适用于AI训练与推理
阿里云弹性计算(ECS)提供强大的AI工作负载平台,支持灵活的资源配置与高性能计算,适用于AI训练与推理。通过合理优化资源分配、利用自动伸缩及高效数据管理,ECS能显著提升AI系统的性能与效率,降低运营成本,助力科研与企业用户在AI领域取得突破。
50 6
|
1月前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
9天前
|
人工智能 Serverless API
10 分钟打造你的专属 AI 客服
在这个数字化时代,提供卓越的客户服务已成为企业脱颖而出的关键。为了满足这一需求,越来越多的企业开始探索人工智能(AI)助手的应用,以实现全天候(7x24)的客户咨询响应,全面提升用户体验和业务竞争力。本解决方案通过函数计算FC 和大模型服务平台百炼,为您提供一个高效便捷构建 AI 助手思路。
|
1月前
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
|
1月前
|
人工智能 Cloud Native 算法

热门文章

最新文章