输出结果
代码设计
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable。Tensorflow当中有两种途径生成变量 variable
import tensorflow as tf
#T1法 tf.name_scope()
with tf.name_scope("a_name_scope"):
initializer = tf.constant_initializer(value=1) #定义常量
var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32, initializer=initializer) #创建变量
var2 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)
var21 = tf.Variable(name='var2', initial_value=[2.1], dtype=tf.float32)
var22 = tf.Variable(name='var2', initial_value=[2.2], dtype=tf.float32)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
#以下打印出每一种Variable的名字及其值
print(var1.name) # var1:0
print(sess.run(var1)) # [ 1.]
print(var2.name) # a_name_scope/var2:0
print(sess.run(var2)) # [ 2.]
print(var21.name) # a_name_scope/var2_1:0
print(sess.run(var21)) # [ 2.0999999]
print(var22.name) # a_name_scope/var2_2:0
print(sess.run(var22)) # [ 2.20000005]
#使用 tf.Variable()定义的时候, 虽然 name都一样, 但是为了不重复变量名, Tensorflow输出的变量名并不是一样的.
#所以, 本质上 var2, var21, var22 并不是一样的变量.
#而另一方面, 使用tf.get_variable()定义的变量不会被tf.name_scope()当中的名字所影响.