DL之RNN:人工智能为你写小说——基于TF利用RNN算法训练数据集(William Shakespeare的《Coriolanus》)替代你写英语小说短文、训练&测试过程全记录

简介: DL之RNN:人工智能为你写小说——基于TF利用RNN算法训练数据集(William Shakespeare的《Coriolanus》)替代你写英语小说短文、训练&测试过程全记录

输出结果


1、test01


conce alone,

Which treason thines, and true a mercy with the man,

And honour the sheet in my stal and taste and him,

I house your servants there, and a shall some

They take a thing a bate of him, but then, but he is were

Too hath to the match her wanders there he wants.

APRINS:

The sender, and the that's all him at thy bloods;

To thee an ast that that the solet is a wealer this thar was a

will seemen of the than a court to me were burist.

LUCIANO:

I am how, an are this holds and to her sad

Woo on your toon and as thing, have the will

A show that's tears of my satate, some are.

SIR TOBY RELLA:

If the word of her of this sad of my mans are?

ALINA:

I should say thou the thee with an erms, we'll he is with his better.

ANTELIUS:

Will you have those stalling and as a wild

In that, have would say well, he will be string that all her

to here, that a bosom and at as my bands to--they

women is shall say this wears thee;

Hath see, a say me off the honour to the with

That wither and sting, and

独自一人,

哪一个叛逆变瘦,真正的仁慈,

并在我的石板上品尝这张纸,品尝他,

我把你的仆人安放在那里

他们把一件事拿给他听,但他现在是

她想去的地方,也有她的对手。

APRINS:

发送者,那就是他在你的血液里;

对你来说,一个让自己成为一个富人的圣地

对我来说似乎比法庭更重要。

LUCIANO:

我是如何,这是持有和她的悲伤

对你的香椿和作为事物,有意志

这是我的眼泪,有些是。

SIR TOBY RELLA:

如果她的话我的男人的这种悲伤是什么?

艾琳娜:

我应该说你是一个厄尔默斯,我们会和他更好相处。

ANTELIUS:

你会有那些失速和野性吗?

在那,有人会说,他会把她所有的绳子

到这里,那一个胸怀和我的乐队

女人应该说这穿了你;

看见了,向我告别

枯萎和刺痛,

2、test02


fort,

To hear mine aldouse, and hath have a tongue of her as mine.

SILVIA:

And so and merty to this hand,

To seal you we would take the thought in a time.

POLANIA:

I am all their mind, that this the tongue.

ANDELIO:

He thither at my badis, tink as thou

handly; and and all thy last at tell thee

Tell you sake a court of thou to my store with him of my shame

To any shild a shild and heaven as her throog

As his meant and hath to my man and sence,

I had all the witere the storal one worth.

PRINCE HENRY:

He hath something to stay.

SIR OF ORIANIO:

He have troubles here.

LAUVANICUS:

With made that the stally that to this horses, and terter.

PALIS:

Is have this true any stone to the with the sold,

I were a master, the tongue, that a sharlon on

me to he saw and may thy stallangers to streak,

The weads to the more so fiers in thee. And you think

What is, to honour to thy house at

their stays and hand, whell string, thyness would have this,

A soul to-news would be the his hands.

He love you

堡垒,

听我的话,她有我的舌头。

SILVIA:

所以,梅蒂,这只手,

为了封你,我们会在一段时间内接受这个想法。

POLANIA:

我都是他们的头脑,这就是舌头。

ANDELIO:

他在我的坏蛋那里,丁克如你

你最后一次告诉你

你把我的羞辱告诉你我的商店

对任何一个阴霾和天堂作为她的悸动

正如他对我的男人和我所拥有的,

我拥有所有值得收藏的东西。

PRINCE HENRY:

他有事要留下。

奥里亚尼奥爵士:

他这里有麻烦。

LAUVANICUS:

就这样把那匹马吓了一跳。

PALIS:

是真的有什么石头卖给谁,

我是一个大师,舌头,一个沙龙

我见他,愿你的斯塔兰格连任,

在你身上,维斯的音符越来越高。你认为

什么是荣耀你的家

他们的停留和手,弦,thyess都有这个,

新闻的灵魂是他的手。

他爱你

监控模型





训练过程全记录


2018-10-13 17:05:49.402137:

step: 10/20000...  loss: 3.4659...  0.1860 sec/batch

……

step: 1000/20000...  loss: 2.0612...  0.1168 sec/batch

……

step: 2000/20000...  loss: 1.9092...  0.1278 sec/batch

……

step: 3000/20000...  loss: 1.8643...  0.1283 sec/batch

……

step: 10000/20000...  loss: 1.8001...  0.1329 sec/batch

……

step: 15000/20000...  loss: 1.7402...  0.1689 sec/batch

step: 15010/20000...  loss: 1.8033...  0.2306 sec/batch

step: 15020/20000...  loss: 1.8284...  0.1499 sec/batch

step: 15030/20000...  loss: 1.7952...  0.1359 sec/batch

step: 15040/20000...  loss: 1.7906...  0.1514 sec/batch

step: 15050/20000...  loss: 1.7777...  0.1053 sec/batch

step: 15060/20000...  loss: 1.7665...  0.1298 sec/batch

step: 15070/20000...  loss: 1.7931...  0.1183 sec/batch

step: 15080/20000...  loss: 1.8027...  0.1404 sec/batch

step: 15090/20000...  loss: 1.8116...  0.1238 sec/batch

step: 15100/20000...  loss: 1.7969...  0.1108 sec/batch

……

step: 19800/20000...  loss: 1.8298...  0.1233 sec/batch

step: 19810/20000...  loss: 1.8231...  0.1228 sec/batch

step: 19820/20000...  loss: 1.7674...  0.1329 sec/batch

step: 19830/20000...  loss: 1.7872...  0.1434 sec/batch

step: 19840/20000...  loss: 1.8333...  0.1228 sec/batch

step: 19850/20000...  loss: 1.6446...  0.1464 sec/batch

step: 19860/20000...  loss: 1.8021...  0.1509 sec/batch

step: 19870/20000...  loss: 1.8217...  0.1168 sec/batch

step: 19880/20000...  loss: 1.7298...  0.1178 sec/batch

step: 19890/20000...  loss: 1.6948...  0.1293 sec/batch

step: 19900/20000...  loss: 1.7582...  0.1253 sec/batch

step: 19910/20000...  loss: 1.8246...  0.1414 sec/batch

step: 19920/20000...  loss: 1.7258...  0.1103 sec/batch

step: 19930/20000...  loss: 1.8216...  0.1544 sec/batch

step: 19940/20000...  loss: 1.7866...  0.1243 sec/batch

step: 19950/20000...  loss: 1.7673...  0.1088 sec/batch

step: 19960/20000...  loss: 1.7285...  0.1088 sec/batch

step: 19970/20000...  loss: 1.7658...  0.1073 sec/batch

step: 19980/20000...  loss: 1.8054...  0.1198 sec/batch

step: 19990/20000...  loss: 1.7714...  0.1128 sec/batch

step: 20000/20000...  loss: 1.7530...  0.1228 sec/batch

训练的数据集


           《科利奥兰纳斯》是莎士比亚晚年撰写的一部罗马历史悲剧,讲述了罗马共和国的英雄马歇斯(被称为科利奥兰纳斯),因性格多疑、脾气暴躁,得罪了公众而被逐出罗马的悲剧。作者以英雄与群众的关系为主线,揭示出人性的弱点。


1、部分章节


First Citizen:

Before we proceed any further, hear me speak.

All:

Speak, speak.

First Citizen:

You are all resolved rather to die than to famish?

All:

Resolved. resolved.

First Citizen:

First, you know Caius Marcius is chief enemy to the people.

All:

We know't, we know't.

First Citizen:

Let us kill him, and we'll have corn at our own price.

Is't a verdict?

All:

No more talking on't; let it be done: away, away!

Second Citizen:

One word, good citizens.

First Citizen:

We are accounted poor citizens, the patricians good.

What authority surfeits on would relieve us: if they

would yield us but the superfluity, while it were

wholesome, we might guess they relieved us humanely;

but they think we are too dear: the leanness that

afflicts us, the object of our misery, is as an

inventory to particularise their abundance; our

sufferance is a gain to them Let us revenge this with

our pikes, ere we become rakes: for the gods know I

speak this in hunger for bread, not in thirst for revenge.

Second Citizen:

Would you proceed especially against Caius Marcius?

All:

Against him first: he's a very dog to the commonalty.

Second Citizen:

Consider you what services he has done for his country?

First Citizen:

Very well; and could be content to give him good

report fort, but that he pays himself with being proud.

Second Citizen:

Nay, but speak not maliciously.

First Citizen:

I say unto you, what he hath done famously, he did

it to that end: though soft-conscienced men can be

content to say it was for his country he did it to

please his mother and to be partly proud; which he

is, even till the altitude of his virtue.

Second Citizen:

What he cannot help in his nature, you account a

vice in him. You must in no way say he is covetous.

First Citizen:

If I must not, I need not be barren of accusations;

he hath faults, with surplus, to tire in repetition.

What shouts are these? The other side o' the city

is risen: why stay we prating here? to the Capitol!

All:

Come, come.

First Citizen:

Soft! who comes here?

Second Citizen:

Worthy Menenius Agrippa; one that hath always loved

the people.

First Citizen:

He's one honest enough: would all the rest were so!





相关文章
|
18天前
|
人工智能 算法 测试技术
软件测试中的人工智能革命
本文深入探讨了人工智能在软件测试中的应用,揭示了这一技术革新如何改变传统的测试流程。通过分析人工智能技术的优势、具体应用案例以及面临的挑战,文章展示了AI如何提高测试效率、减少人为错误,并预测其在未来软件测试中的趋势。此外,文章还提出了针对当前挑战的解决策略,为软件测试行业的从业者提供了宝贵的参考和启示。
32 4
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命:提升测试效率与质量的新篇章
随着人工智能技术的不断成熟,其在软件测试领域的应用正逐渐改变传统测试方式。本文将探讨AI在软件测试中的应用现状、优势以及面临的挑战,并通过具体案例分析展示AI如何提高测试效率和质量。最后,我们将讨论未来AI在软件测试中的发展趋势及其对人类测试工程师角色的影响。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命
本文探讨了人工智能在软件测试中的应用,包括自动化测试、智能缺陷检测和测试用例生成。通过实际案例分析,展示了AI如何提高测试效率和准确性,并讨论了未来发展趋势。
|
14天前
|
人工智能 算法 测试技术
软件测试中的人工智能:提升测试效率与质量
随着软件开发的快速发展,传统的手工测试方法已经无法满足现代软件项目的需求。本文探讨了人工智能在软件测试中的应用,如何通过自动化测试、智能缺陷分析和测试用例生成等技术,提高测试效率和质量。我们将详细介绍这些技术的原理和实际应用,并讨论其带来的优势和挑战。
|
18天前
|
设计模式 人工智能 算法
PHP中的设计模式:策略模式的深入解析与实践软件测试中的人工智能革命:提升效率与准确性的新篇章
在PHP开发中,理解并运用设计模式是提升代码质量和可维护性的重要途径。本文聚焦于策略模式(Strategy Pattern),一种行为型设计模式,它允许在运行时选择算法或业务规则。通过本文,我们将深入探讨策略模式的定义、结构、使用场景以及如何在PHP项目中有效地实现和利用策略模式。不同于性能优化等技术性摘要,本文着重于提供对策略模式全面而实用的理解,助力开发者编写出更加灵活和可扩展的应用程序。 本文深入探讨了人工智能在软件测试领域的应用,揭示了其如何显著提高测试过程的效率和准确性。通过实际案例分析,展示了AI技术在自动化测试、缺陷检测及结果分析中的关键作用,并讨论了实施AI测试策略时面临的挑
17 3
|
2月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
72 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命
在软件开发的浩瀚海洋中,质量是那颗指引航向的北极星。随着人工智能(AI)技术的迅猛发展,传统软件测试正经历一场前所未有的变革。本文将深入探讨AI如何重塑软件测试领域,提高测试效率与准确性,并展望未来AI测试的发展趋势。
23 0
|
2月前
|
人工智能 自然语言处理 算法
【人工智能】TF-IDF算法概述
TF-IDF算法,全称Term Frequency-Inverse Document Frequency(词频-逆文档频率),是一种在信息检索和文本挖掘领域广泛应用的加权技术。它通过评估一个词语在文档中的重要程度,来挖掘文章中的关键词,进而用于文本分析、搜索引擎优化等场景。其核心思想是:如果某个词或短语在一篇文章中出现的频率高(TF高),且在其他文章中很少出现(IDF也高),则认为这个词或短语具有很好的类别区分能力,适合用来代表这篇文章的内容。 具体而言,TF-IDF由两部分组成,即词频(TF)和逆文档频率(IDF)。词频(TF)指的是某一个给定的词在该文件中出现的频率。这个数值通常会被归一化
30 3
|
2月前
|
机器学习/深度学习 人工智能 算法
【人工智能】线性回归模型:数据结构、算法详解与人工智能应用,附代码实现
线性回归是一种预测性建模技术,它研究的是因变量(目标)和自变量(特征)之间的关系。这种关系可以表示为一个线性方程,其中因变量是自变量的线性组合。
50 2
|
2月前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
57 2
下一篇
无影云桌面