深度学习500问——Chapter06: 循环神经网络(RNN)(1)

简介: 深度学习500问——Chapter06: 循环神经网络(RNN)(1)

6.1 为什么需要RNN

时间序列数据是指在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。一般的神经网络,在训练数据足够、算法模型优越的情况下,给定特定的x,就能得到期望y。其一般处理单个的输入,前一个输入和后一个输入完全无关,但实际应用中,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。比如:

当我们在理解一句话意思时,孤立的理解这句话的每个词不足以理解整体意思,我们通常需要处理这些词连接起来的整个序列;当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。为了解决一些这样类似的问题,能够更好的处理序列的信息,RNN就由此诞生了。

6.2 图解RNN基本结构

6.2.1 基本的单层网络结构

在进一步了解RNN之前,先给出最基本的单层网络结构,输入是x,经过变换Wx+b和激活函数f得到输出y

6.2.2 图解经典RNN结构

在实际应用中,我们还会遇到很多序列形的数据。如:

  • 自然语言处理问题。x1 可以看作是第一个单词, 可以看作是第二个单词,依次类推。
  • 语音处理。此时,x1,x2,x3..... 是每帧的声音。
  • 时间序列问题。例如每天的股票价格等等。

其单个序列如下图所示:

前面介绍了诸如此类的序列数据用原始的神经网络难以建模,基于此,RNN引入了隐状态(hidden state),可对序列数据提取特征,接着再转换为输出。

为了便于理解,先计算h1

注:图中的圆圈表示向量,箭头表示对向量做变换。


RNN中,每个步骤使用的参数U,W,b相同,ℎ2的计算方式和ℎ1类似,其计算结果如下:

计算 也相似,可得:

接下来,计算RNN的输出y1,采用Softmax作为激活函数,根据yn=f(Wx+b) ,得y1


使用和y1相同的参数V,c,得到y1,y2,y3,y4的输出结构:

以上即为最经典的RNN结构,其输入为x1,x2,x3,x4,输出为y1,y2,y3,y4,当然实际中最大值为yn,这里为了便于理解和展示,只计算4个输入和输出。从以上结构可看出,RNN结构的输入和输出等长。

6.2.3 vector-to-sequence结构

有时我们要处理的问题输入是一个单独的值,输出是一个序列。此时,有两种主要建模方式:

方式一:可只在其中的某一个序列进行计算,比如序列第一个进行输入计算,其建模方式如下:

方式二:把输入信息 X 作为每个阶段的输入,其建模方式如下:

6.2.4 sequence-to-vector结构

有时我们要处理的问题输入是一个序列,输出是一个单独的值,此时通常在最后的一个序列上进行输出变换。其建模如下所示:

6.2.5 Encoder-Decoder结构

原始的sequence-to-sequence结构的RNN要求序列等长,然而我们遇到的大部分问题序列都是不等长的,如机器翻译中,源语言和目标语言的句子往往没有相同的长度。

其建模步骤如下:

步骤1:将输入数据编码成一个上下文向量 ,这部分称为Encoder,得到的 有多种方式,最简单的方法就是把Encoder的最后一个隐状态赋值给 ,还可以对最后的隐状态做一个变换得到 ,也可以对所有的隐状态做变换。其示意如下所示:

步骤2:用另一个RNN网络(我们将其称为Decoder)对其进行编码。

方法一是将步骤1中的 作为初始状态输入到Decoder,示意图如下所示:

方法二是将 作为Decoder的每一步输入,示意图如下所示:

6.2.6 以上三种结构各有怎样的应用场景

网络结构 结构图示 应用场景举例
1 vs N

1、从图像生成文字,输入为图像的特征,输出为一段句子

2、根据图像生成语音或音乐,输入为图像特征,输出为一段语音或音乐

N vs 1

1、输出一段文字,判断其所属类别

2、输入一个句子,判断其情感倾向

3、输入一段视频,判断其所属类别

N vs M

1、机器翻译,输入一种语言文本序列,输出另一种语言文本序列

2、文本摘要,输入文本序列,输出这段文本序列摘要

3、阅读理解,输入文章,输出问题答案

4、语音识别,输入语音序列信息,输出文字序列

6.2.7 图解RNN中的Attention机制

在上述通用的Encoder-Decoder结构中,Encoder把所有的输入序列都编码成一个统一的语义特征再解码,因此,中必须包含原始序列中的所有信息,它的长度就成了限制模型性能的瓶颈。如机器翻译问题,当要翻译的句子较长时,一个可能存不下那么多信息,就会造成翻译精度的下降。Attention机制通过在每个时间输入不同的来解决此问题。

引入了Attention机制的Decoder后,有不同的,每个会自动选择与当前输出最匹配的上下文信息,其示意图如下所示:


举例:比如输入序列是“我爱中国”,要将此输入翻译成英文:

假如用aij衡量Encoder中第 阶段的hj和解码时第 阶段的相关性,aij从模型中学习得到,和Decoder的第i1阶段的隐状态、Encoder第 个阶段的隐状态有关,比如a3j的计算示意如下所示:


最终Decoder中第 阶段的输入的上下文信息ci来自所有hjaij的加权和。

其示意图如下图所示:


在Encoder中,h1,h2,h3,h4分别代表“我”,“爱”,“中”,“国”所代表信息。翻译的过程中,c1会选择和“我”最相关的上下午信息,如上图所示,会优先选择a11,以此类推,c2会优先选择相关性较大的a22会优先选择相关性较大的a33,a34,这就是Aattention机制。

6.3 RNNs典型特点

1、RNN主要用于处理序列数据。对于传统的神经网络模型,从输入层到隐含层再到输出层,层与层之间一般为全连接,每层之间神经元是无连接的。但是传统神经网络无法处理数据间的前后关联问题。例如,为了预测句子的下一个单词,一般需要该词之前的语义信息。这是因为一个句子中前后单词是存在语义联系的。

2、RNNs中当前单元的输出与之前步骤输出也有关,因此称之为循环神经网络。具体的表现形式为当前单元会对之前步骤信息进行存储并应用与当前输出的计算中。隐藏层之间的节点连接起来,隐藏层当前输出由当前时刻输入向量和之前时刻隐藏层状态共同决定。

3、标准的RNNs结构图中,图中每个箭头代表做一次变换,也就是说箭头连接带有权值。

4、在标准的RNN结构中。隐藏层的神经元之间也是带有权值的,且权值共享。

5、理论上,RNNs能够对任何长度序列数据进行处理。但是在实践中,为了降低复杂度往往假设当前状态只与之前某几个时刻状态相关,下图便是一个典型的RNNs:

  • 输入单元(Input units):输入集
  • 输出单元(Output units):输出集{y0,y1,,yt,yt+1,}
  • 隐藏单元(Hidden units):输出集s{s0,s1,,st,st+1,}

图中信息传递特点:

  1. 一条单向流动的信息流是从输入单元到隐藏单元。
  2. 一条单向流动的信息流从隐藏单元到输出单元。
  3. 在某些情况下,RNNs会打破后者的限制,引导信息从输出单元返回隐藏单元,这些被称为“Back Projections”。
  4. 当前单元(cell)输出是由当前时刻输入和上一时刻隐藏层状态共同决定。

目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
7天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
25 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
11天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
21天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
36 7
|
21天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
21天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
25 0
|
11天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
21 0
|
12天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。