DL之Yolov3:基于深度学习Yolov3算法实现视频目标检测之对《我要打篮球》视频段进行实时目标检测(二)

简介: DL之Yolov3:基于深度学习Yolov3算法实现视频目标检测之对《我要打篮球》视频段进行实时目标检测

2、model.py文件


     上边网络模型的代码定义,比如DarknetConv2D、DarknetConv2D_BN_Leaky、resblock_body、darknet_body、make_last_layers、yolo_body、yolo_head、yolo_eval等函数,其中preprocess_true_boxes()函数找出人工标定框GT框,通过计算候选框和GT框的IOU,才会找出best_abchor。

      可以参考网络模型图去理解。详见DL之Yolov3:基于深度学习Yolov3算法实现视频目标检测之对《我要打篮球》视频段进行实时目标检测 的model.py文件。


image.png"""YOLO_v3 Model Defined in Keras."""

from functools import wraps

import numpy as np

import tensorflow as tf

from keras import backend as K

from keras.layers import Conv2D, Add, ZeroPadding2D, UpSampling2D, Concatenate, MaxPooling2D

from keras.layers.advanced_activations import LeakyReLU

from keras.layers.normalization import BatchNormalization

from keras.models import Model

from keras.regularizers import l2

from yolo3.utils import compose

@wraps(Conv2D)

def DarknetConv2D(*args, **kwargs):

   """Wrapper to set Darknet parameters for Convolution2D."""

   darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)}

   darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2,2) else 'same'

   darknet_conv_kwargs.update(kwargs)

   return Conv2D(*args, **darknet_conv_kwargs)

def DarknetConv2D_BN_Leaky(*args, **kwargs):

   """Darknet Convolution2D followed by BatchNormalization and LeakyReLU."""

   no_bias_kwargs = {'use_bias': False}

   no_bias_kwargs.update(kwargs)

   return compose(

       DarknetConv2D(*args, **no_bias_kwargs),

       BatchNormalization(),

       LeakyReLU(alpha=0.1))

def resblock_body(x, num_filters, num_blocks):

   '''A series of resblocks starting with a downsampling Convolution2D'''

   # Darknet uses left and top padding instead of 'same' mode

   x = ZeroPadding2D(((1,0),(1,0)))(x)

   x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)

   for i in range(num_blocks):

       y = compose(

               DarknetConv2D_BN_Leaky(num_filters//2, (1,1)),

               DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x)

       x = Add()([x,y])

   return x

def darknet_body(x):

   '''Darknent body having 52 Convolution2D layers'''

   x = DarknetConv2D_BN_Leaky(32, (3,3))(x)

   x = resblock_body(x, 64, 1)

   x = resblock_body(x, 128, 2)

   x = resblock_body(x, 256, 8)

   x = resblock_body(x, 512, 8)

   x = resblock_body(x, 1024, 4)

   return x

def make_last_layers(x, num_filters, out_filters):

   '''6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer'''

   x = compose(

           DarknetConv2D_BN_Leaky(num_filters, (1,1)),

           DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),

           DarknetConv2D_BN_Leaky(num_filters, (1,1)),

           DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),

           DarknetConv2D_BN_Leaky(num_filters, (1,1)))(x)

   y = compose(

           DarknetConv2D_BN_Leaky(num_filters*2, (3,3)),

           DarknetConv2D(out_filters, (1,1)))(x)

   return x, y

def yolo_body(inputs, num_anchors, num_classes):

   """Create YOLO_V3 model CNN body in Keras."""

   darknet = Model(inputs, darknet_body(inputs))

   x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))

   x = compose(

           DarknetConv2D_BN_Leaky(256, (1,1)),

           UpSampling2D(2))(x)

   x = Concatenate()([x,darknet.layers[152].output])

   x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5))

   x = compose(

           DarknetConv2D_BN_Leaky(128, (1,1)),

           UpSampling2D(2))(x)

   x = Concatenate()([x,darknet.layers[92].output])

   x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5))

   return Model(inputs, [y1,y2,y3])

def tiny_yolo_body(inputs, num_anchors, num_classes):

   '''Create Tiny YOLO_v3 model CNN body in keras.'''

   x1 = compose(

           DarknetConv2D_BN_Leaky(16, (3,3)),

           MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),

           DarknetConv2D_BN_Leaky(32, (3,3)),

           MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),

           DarknetConv2D_BN_Leaky(64, (3,3)),

           MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),

           DarknetConv2D_BN_Leaky(128, (3,3)),

           MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),

           DarknetConv2D_BN_Leaky(256, (3,3)))(inputs)

   x2 = compose(

           MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),

           DarknetConv2D_BN_Leaky(512, (3,3)),

           MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='same'),

           DarknetConv2D_BN_Leaky(1024, (3,3)),

           DarknetConv2D_BN_Leaky(256, (1,1)))(x1)

   y1 = compose(

           DarknetConv2D_BN_Leaky(512, (3,3)),

           DarknetConv2D(num_anchors*(num_classes+5), (1,1)))(x2)

   x2 = compose(

           DarknetConv2D_BN_Leaky(128, (1,1)),

           UpSampling2D(2))(x2)

   y2 = compose(

           Concatenate(),

           DarknetConv2D_BN_Leaky(256, (3,3)),

           DarknetConv2D(num_anchors*(num_classes+5), (1,1)))([x2,x1])

   return Model(inputs, [y1,y2])

def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):

   """Convert final layer features to bounding box parameters."""

   num_anchors = len(anchors)

   # Reshape to batch, height, width, num_anchors, box_params.

   anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

   grid_shape = K.shape(feats)[1:3] # height, width

   grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),

       [1, grid_shape[1], 1, 1])

   grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),

       [grid_shape[0], 1, 1, 1])

   grid = K.concatenate([grid_x, grid_y])

   grid = K.cast(grid, K.dtype(feats))

   feats = K.reshape(

       feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

   # Adjust preditions to each spatial grid point and anchor size.

   box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))

   box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))

   box_confidence = K.sigmoid(feats[..., 4:5])

   box_class_probs = K.sigmoid(feats[..., 5:])

   if calc_loss == True:

       return grid, feats, box_xy, box_wh

   return box_xy, box_wh, box_confidence, box_class_probs

def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):

   '''Get corrected boxes'''

   box_yx = box_xy[..., ::-1]

   box_hw = box_wh[..., ::-1]

   input_shape = K.cast(input_shape, K.dtype(box_yx))

   image_shape = K.cast(image_shape, K.dtype(box_yx))

   new_shape = K.round(image_shape * K.min(input_shape/image_shape))

   offset = (input_shape-new_shape)/2./input_shape

   scale = input_shape/new_shape

   box_yx = (box_yx - offset) * scale

   box_hw *= scale

   box_mins = box_yx - (box_hw / 2.)

   box_maxes = box_yx + (box_hw / 2.)

   boxes =  K.concatenate([

       box_mins[..., 0:1],  # y_min

       box_mins[..., 1:2],  # x_min

       box_maxes[..., 0:1],  # y_max

       box_maxes[..., 1:2]  # x_max

   ])

   # Scale boxes back to original image shape.

   boxes *= K.concatenate([image_shape, image_shape])

   return boxes

def yolo_boxes_and_scores(feats, anchors, num_classes, input_shape, image_shape):

   '''Process Conv layer output'''

   box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats,

       anchors, num_classes, input_shape)

   boxes = yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape)

   boxes = K.reshape(boxes, [-1, 4])

   box_scores = box_confidence * box_class_probs

   box_scores = K.reshape(box_scores, [-1, num_classes])

   return boxes, box_scores

def yolo_eval(yolo_outputs,

             anchors,

             num_classes,

             image_shape,

             max_boxes=20,

             score_threshold=.6,

             iou_threshold=.5):

   """Evaluate YOLO model on given input and return filtered boxes."""

   num_layers = len(yolo_outputs)

   anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]] # default setting

   input_shape = K.shape(yolo_outputs[0])[1:3] * 32

   boxes = []

   box_scores = []

   for l in range(num_layers):

       _boxes, _box_scores = yolo_boxes_and_scores(yolo_outputs[l],

           anchors[anchor_mask[l]], num_classes, input_shape, image_shape)

       boxes.append(_boxes)

       box_scores.append(_box_scores)

   boxes = K.concatenate(boxes, axis=0)

   box_scores = K.concatenate(box_scores, axis=0)

   mask = box_scores >= score_threshold

   max_boxes_tensor = K.constant(max_boxes, dtype='int32')

   boxes_ = []

   scores_ = []

   classes_ = []

   for c in range(num_classes):

       # TODO: use keras backend instead of tf.

       class_boxes = tf.boolean_mask(boxes, mask[:, c])

       class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c])

       nms_index = tf.image.non_max_suppression(

           class_boxes, class_box_scores, max_boxes_tensor, iou_threshold=iou_threshold)

       class_boxes = K.gather(class_boxes, nms_index)

       class_box_scores = K.gather(class_box_scores, nms_index)

       classes = K.ones_like(class_box_scores, 'int32') * c

       boxes_.append(class_boxes)

       scores_.append(class_box_scores)

       classes_.append(classes)

   boxes_ = K.concatenate(boxes_, axis=0)

   scores_ = K.concatenate(scores_, axis=0)

   classes_ = K.concatenate(classes_, axis=0)

   return boxes_, scores_, classes_

def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):

   '''Preprocess true boxes to training input format

   Parameters

   ----------

   true_boxes: array, shape=(m, T, 5)

       Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.

   input_shape: array-like, hw, multiples of 32

   anchors: array, shape=(N, 2), wh

   num_classes: integer

   Returns

   -------

   y_true: list of array, shape like yolo_outputs, xywh are reletive value

   '''

   assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes'

   num_layers = len(anchors)//3 # default setting

   anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]

   true_boxes = np.array(true_boxes, dtype='float32')

   input_shape = np.array(input_shape, dtype='int32')

   boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2

   boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]

   true_boxes[..., 0:2] = boxes_xy/input_shape[::-1]

   true_boxes[..., 2:4] = boxes_wh/input_shape[::-1]

   m = true_boxes.shape[0]

   grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)]

   y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),

       dtype='float32') for l in range(num_layers)]

   # Expand dim to apply broadcasting.

   anchors = np.expand_dims(anchors, 0)

   anchor_maxes = anchors / 2.

   anchor_mins = -anchor_maxes

   valid_mask = boxes_wh[..., 0]>0

   for b in range(m):

       # Discard zero rows.

       wh = boxes_wh[b, valid_mask[b]]

       if len(wh)==0: continue

       # Expand dim to apply broadcasting.

       wh = np.expand_dims(wh, -2)

       box_maxes = wh / 2.

       box_mins = -box_maxes

       intersect_mins = np.maximum(box_mins, anchor_mins)

       intersect_maxes = np.minimum(box_maxes, anchor_maxes)

       intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)

       intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]

       box_area = wh[..., 0] * wh[..., 1]

       anchor_area = anchors[..., 0] * anchors[..., 1]

       iou = intersect_area / (box_area + anchor_area - intersect_area)

       # Find best anchor for each true box

       best_anchor = np.argmax(iou, axis=-1)

       for t, n in enumerate(best_anchor):

           for l in range(num_layers):

               if n in anchor_mask[l]:

                   i = np.floor(true_boxes[b,t,0]*grid_shapes[l][1]).astype('int32')

                   j = np.floor(true_boxes[b,t,1]*grid_shapes[l][0]).astype('int32')

                   k = anchor_mask[l].index(n)

                   c = true_boxes[b,t, 4].astype('int32')

                   y_true[l][b, j, i, k, 0:4] = true_boxes[b,t, 0:4]

                   y_true[l][b, j, i, k, 4] = 1

                   y_true[l][b, j, i, k, 5+c] = 1

   return y_true

def box_iou(b1, b2):

   '''Return iou tensor

   Parameters

   ----------

   b1: tensor, shape=(i1,...,iN, 4), xywh

   b2: tensor, shape=(j, 4), xywh

   Returns

   -------

   iou: tensor, shape=(i1,...,iN, j)

   '''

   # Expand dim to apply broadcasting.

   b1 = K.expand_dims(b1, -2)

   b1_xy = b1[..., :2]

   b1_wh = b1[..., 2:4]

   b1_wh_half = b1_wh/2.

   b1_mins = b1_xy - b1_wh_half

   b1_maxes = b1_xy + b1_wh_half

   # Expand dim to apply broadcasting.

   b2 = K.expand_dims(b2, 0)

   b2_xy = b2[..., :2]

   b2_wh = b2[..., 2:4]

   b2_wh_half = b2_wh/2.

   b2_mins = b2_xy - b2_wh_half

   b2_maxes = b2_xy + b2_wh_half

   intersect_mins = K.maximum(b1_mins, b2_mins)

   intersect_maxes = K.minimum(b1_maxes, b2_maxes)

   intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)

   intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]

   b1_area = b1_wh[..., 0] * b1_wh[..., 1]

   b2_area = b2_wh[..., 0] * b2_wh[..., 1]

   iou = intersect_area / (b1_area + b2_area - intersect_area)

   return iou

def yolo_loss(args, anchors, num_classes, ignore_thresh=.5, print_loss=False):

   '''Return yolo_loss tensor

   Parameters

   ----------

   yolo_outputs: list of tensor, the output of yolo_body or tiny_yolo_body

   y_true: list of array, the output of preprocess_true_boxes

   anchors: array, shape=(N, 2), wh

   num_classes: integer

   ignore_thresh: float, the iou threshold whether to ignore object confidence loss

   Returns

   -------

   loss: tensor, shape=(1,)

   '''

   num_layers = len(anchors)//3 # default setting

   yolo_outputs = args[:num_layers]

   y_true = args[num_layers:]

   anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers==3 else [[3,4,5], [1,2,3]]

   input_shape = K.cast(K.shape(yolo_outputs[0])[1:3] * 32, K.dtype(y_true[0]))

   grid_shapes = [K.cast(K.shape(yolo_outputs[l])[1:3], K.dtype(y_true[0])) for l in range(num_layers)]

   loss = 0

   m = K.shape(yolo_outputs[0])[0] # batch size, tensor

   mf = K.cast(m, K.dtype(yolo_outputs[0]))

   for l in range(num_layers):

       object_mask = y_true[l][..., 4:5]

       true_class_probs = y_true[l][..., 5:]

       grid, raw_pred, pred_xy, pred_wh = yolo_head(yolo_outputs[l],

            anchors[anchor_mask[l]], num_classes, input_shape, calc_loss=True)

       pred_box = K.concatenate([pred_xy, pred_wh])

       # Darknet raw box to calculate loss.

       raw_true_xy = y_true[l][..., :2]*grid_shapes[l][::-1] - grid

       raw_true_wh = K.log(y_true[l][..., 2:4] / anchors[anchor_mask[l]] * input_shape[::-1])

       raw_true_wh = K.switch(object_mask, raw_true_wh, K.zeros_like(raw_true_wh)) # avoid log(0)=-inf

       box_loss_scale = 2 - y_true[l][...,2:3]*y_true[l][...,3:4]

       # Find ignore mask, iterate over each of batch.

       ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)

       object_mask_bool = K.cast(object_mask, 'bool')

       def loop_body(b, ignore_mask):

           true_box = tf.boolean_mask(y_true[l][b,...,0:4], object_mask_bool[b,...,0])

           iou = box_iou(pred_box[b], true_box)

           best_iou = K.max(iou, axis=-1)

           ignore_mask = ignore_mask.write(b, K.cast(best_iou<ignore_thresh, K.dtype(true_box)))

           return b+1, ignore_mask

       _, ignore_mask = K.control_flow_ops.while_loop(lambda b,*args: b<m, loop_body, [0, ignore_mask])

       ignore_mask = ignore_mask.stack()

       ignore_mask = K.expand_dims(ignore_mask, -1)

       # K.binary_crossentropy is helpful to avoid exp overflow.

       xy_loss = object_mask * box_loss_scale * K.binary_crossentropy(raw_true_xy, raw_pred[...,0:2], from_logits=True)

       wh_loss = object_mask * box_loss_scale * 0.5 * K.square(raw_true_wh-raw_pred[...,2:4])

       confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True)+ \

           (1-object_mask) * K.binary_crossentropy(object_mask, raw_pred[...,4:5], from_logits=True) * ignore_mask

       class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[...,5:], from_logits=True)

       xy_loss = K.sum(xy_loss) / mf

       wh_loss = K.sum(wh_loss) / mf

       confidence_loss = K.sum(confidence_loss) / mf

       class_loss = K.sum(class_loss) / mf

       loss += xy_loss + wh_loss + confidence_loss + class_loss

       if print_loss:

           loss = tf.Print(loss, [loss, xy_loss, wh_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')

   return loss


相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
214 55
|
3月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
70 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
4天前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
24 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
29天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
23天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
94 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
105 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
103 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
101 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型