DL之ShuffleNetV2:ShuffleNetV2算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略(一)

简介: DL之ShuffleNetV2:ShuffleNetV2算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

ShuffleNetV2算法的简介(论文介绍)


     ShuffleNetV2是ShuffleNet的升级版本。


Abstract  

     Currently, the neural network architecture design is mostly  guided by the indirect metric of computation complexity, i.e., FLOPs.  However, the direct metric, e.g., speed, also depends on the other factors  such as memory access cost and platform characterics. Thus, this work  proposes to evaluate the direct metric on the target platform, beyond  only considering FLOPs. Based on a series of controlled experiments,  this work derives several practical guidelines for efficient network design.  Accordingly, a new architecture is presented, called ShuffleNet V2.  Comprehensive ablation experiments verify that our model is the stateof-the-art  in terms of speed and accuracy tradeoff.  

Keywords: CNN architecture design, efficiency, practical

摘要

     目前,神经网络体系结构设计大多以计算复杂度的间接度量为指导,即FLOPs。然而,直接度量(如速度)也取决于其他因素,如内存访问成本和平台特性。因此,这项工作建议评估目标平台上的直接指标,而不仅仅是考虑故障。在一系列受控实验的基础上,得出了有效网络设计的几种实用指导原则。因此,提出了一种新的体系结构,称为ShuffleNet V2。综合消融实验验证了我们的模型在速度和精度上是最先进的。

关键词:CNN架构设计;高效;实用

Conclusion  

     We propose that network architecture design should consider the direct metric  such as speed, instead of the indirect metric like FLOPs. We present practical  guidelines and a novel architecture, ShuffleNet v2. Comprehensive experiments  verify the effectiveness of our new model. We hope this work could inspire future  work of network architecture design that is platform aware and more practical.

结论

     我们建议网络架构设计应考虑直接指标如速度,而不是间接指标(如FLOPs)。我们提出了实用的指南和一个新颖的体系结构,ShuffleNet v2.。综合实验验证新模型的有效性。我们希望这项工作能够激发未来网络架构设计的工作,使其具有平台意识和更实用性。


论文

Ningning Ma, XiangyuZhang, Hai-Tao Zheng, Jian Sun.

ShuffleNetV2: Practical Guidelines for Efficient CNN Architecture Design. ECCV 2018.

https://arxiv.org/abs/1807.11164



1、论文特点


     度量标准太单一:目前,神经网络架构设计主要由计算复杂度的间接度量(即FLOPs)所指导。然而,直接度量(例如,执行速度)还取决于诸如存储器访问成本和平台特性之类的其他因素。因此,作者建议评估目标平台上的直接度量,而不仅仅考虑FLOPs。

    ShuffleNetV2采用更好的度量标准:基于一系列对照实验,该论文为有效的网络设计提供了一些实用指南,并提出了一种称为ShuffleNetV2的新架构。



2、基于硬件平台的性能分析


1、四种不同计算复杂度的硬件平台上,测量四种网络架构的准确度(验证集上的ImageNet分类),速度和FLOPs


image.png


        在两个具有四种不同计算复杂度的硬件平台上测量四种网络架构的准确度(验证集上的ImageNet分类),速度和FLOPs。

(a,c)GPU结果,batchsize= 8.(b,d)ARM结果,batchsize= 1。在所有情况下,性能最佳的算法,即论文提出的ShuffleNetv2(位于右上角区域)的准确度、复杂度都有明显提高。



2、ShuffeNetv1 和 MobileNetv2 两个架构在不同计算平台上的分解

     在两个具有代表性的最先进的网络架构上运行时分解:ShuffeNetv1 (1×, g = 3) 和 MobileNetv2 (1×).

     Run time decomposition on two representative state-of-the-art network architectures, ShuffeNetv1 (1×, g = 3) and MobileNetv2 (1×). 比如卷积操作、Shuffle操作、Elemwise逐点操作等操作所需时间占比分布图,明显的看出:

(1)、卷积操作占用了大部分的计算量,Elemwise逐点操作次之。

(2)、不同的操作平台,比如卷积操作占用时间也不一样。


image.png



3、间接指标(FLOPs)和直接指标(速度)之间的差异


分析——问题原因:间接指标(FLOPs)和直接指标(速度)之间的差异可归因于两个主要原因:


1、首先,FLOPs没有考虑几个对速度有相当影响的重要因素。

(1)、一个这样的因素是存储器访问成本(MAC,memory access cost )。在诸如组卷积的某些操作中,这种成本占运行时的很大一部分。它可能是具有强大计算能力的设备(例如GPU)的瓶颈。在网络架构设计中不应忽略此成本。

(2)、另一个是并行度。在相同的FLOPs下,具有高并行度的模型可能比具有低并行度的另一个模型快得多。

2、其次,具有相同FLOPs的操作,可能具有不同的运行时间,具体取决于平台。例如,张量分解广泛用于早期工作以加速矩阵乘法。然而,最近的工作发现尽管分解将FLOPs降低了75%,在GPU上甚至更慢。当然不能认为3×3转换,比1×1转换慢9倍。作者发现这是因为最新的CUDNN 库专门为3×3卷积转换而优化。

思考——解决方法:通过这些观察,作者提出应该考虑两个原则来进行有效的网络架构设计。


首先,应该使用直接度量(例如,速度)而不是间接度量(例如,FLOPs)。

其次,应在具体的目标平台上,进行评估此类指标。


3、该论文实验采用的硬件


作者的研究是在两个广泛采用的硬件上进行的,具有CNN库的行业级优化。


GPU:使用单个NVIDIA GeForce GTX 1080Ti。卷积库是CUDNN 7.0 。还激活了CUDNN的基准测试功能,分别为不同的卷积选择最快的算法。

ARM:Qualcomm Snapdragon 810。使用高度优化的基于Neon的实现。评估时使用单个线程。其他设置包括:接通完全优化选项(例如,用于减少小操作的开销的tensor fusion)。输入图像大小为224×224。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
5天前
|
Kubernetes Cloud Native 持续交付
探索云原生架构:打造弹性可扩展的应用
【9月更文挑战第29天】在云计算的浪潮中,云原生架构成为企业追求高效、灵活和可靠服务的关键。本文将深入解析云原生的概念,探讨如何利用容器化、微服务和持续集成/持续部署(CI/CD)等技术构建现代化应用。我们将通过一个简易的代码示例,展示如何在Kubernetes集群上部署一个基于Node.js的应用,从而揭示云原生技术的强大能力和潜在价值。
18 6
|
6天前
|
监控 Cloud Native 持续交付
云原生架构:构建弹性与高效的现代应用##
随着云计算技术的不断成熟,云原生架构逐渐成为企业技术转型的重要方向。本文将深入探讨云原生的核心概念、主要技术和典型应用场景,以及如何通过云原生架构实现高可用性、弹性扩展和快速迭代,助力企业在数字化转型中保持竞争优势。 ##
24 6
|
7天前
|
运维 Cloud Native 持续交付
云原生架构:构建未来应用的基石
本文将深入探讨云原生架构的核心概念、主要优势以及实际应用案例,揭示其在现代IT领域的重要性。通过详细解析云原生技术的各个方面,帮助读者更好地理解和应用这一前沿技术。
|
7天前
|
前端开发 测试技术 API
探索微前端架构:构建现代化的前端应用
在软件开发中,传统单体架构已难以满足快速迭代需求,微前端架构应运而生。它将前端应用拆分成多个小型、独立的服务,每个服务均可独立开发、测试和部署。本文介绍微前端架构的概念与优势,并指导如何实施。微前端架构具备自治性、技术多样性和共享核心的特点,能够加速开发、提高可维护性,并支持灵活部署策略。实施步骤包括定义服务边界、选择架构模式、建立共享核心、配置跨服务通信及实现独立部署。尽管面临服务耦合、状态同步等挑战,合理规划仍可有效应对。
|
9天前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
9天前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
2月前
|
Kubernetes Cloud Native Docker
云原生之旅:从容器到微服务的架构演变
【8月更文挑战第29天】在数字化时代的浪潮下,云原生技术以其灵活性、可扩展性和弹性管理成为企业数字化转型的关键。本文将通过浅显易懂的语言和生动的比喻,带领读者了解云原生的基本概念,探索容器化技术的奥秘,并深入微服务架构的世界。我们将一起见证代码如何转化为现实中的服务,实现快速迭代和高效部署。无论你是初学者还是有经验的开发者,这篇文章都会为你打开一扇通往云原生世界的大门。
|
12天前
|
JSON 监控 安全
探索微服务架构中的API网关模式
【9月更文挑战第22天】在微服务架构的海洋中,API网关如同一位智慧的守门人,不仅管理着服务的进出,还维护着整个系统的秩序。本文将带你一探究竟,看看这位守门人是如何工作的,以及它为何成为现代云原生应用不可或缺的一部分。从流量控制到安全防护,再到服务聚合,我们将一起解锁API网关的秘密。
|
22天前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
27 3
|
26天前
|
监控 负载均衡 应用服务中间件
探索微服务架构下的API网关设计与实践
在数字化浪潮中,微服务架构以其灵活性和可扩展性成为企业IT架构的宠儿。本文将深入浅出地介绍微服务架构下API网关的关键作用,探讨其设计原则与实践要点,旨在帮助读者更好地理解和应用API网关,优化微服务间的通信效率和安全性,实现服务的高可用性和伸缩性。
38 3
下一篇
无影云桌面