人工智能LLM问题之推荐系统的架构流程图如何解决

简介: 人工智能LLM问题之推荐系统的架构流程图如何解决

问题一:推荐系统的架构有没有什么流程图


推荐系统的架构有没有什么流程图


参考回答:

你想要的是这个吧


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615732


问题二:一个完整的推荐系统通常包含什么


一个完整的推荐系统通常包含什么


参考回答:

一个完整的推荐系统通常包含召回、排序(粗排、精排、重排、端排序)、业务过滤层等几个重要的逻辑分层。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615733


问题三:现在的推荐系统是怎么预测的


现在的推荐系统是怎么预测的


参考回答:

现在的推荐系统虽然看似智能化,但其核心方法仍然是通过分析用户在特定场景内的行为数据来进行预测,这种方法容易导致过拟合,即系统过度依赖这些行为数据。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615734


问题四:推荐系统过拟合会带来哪些问题


推荐系统过拟合会带来哪些问题


参考回答:

过拟合虽然可能会带来短期内的效果提升,但长期来看会导致一系列问题,如冷启动用户问题、买了还推问题以及内容推荐单一等。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615735


问题五:推荐系统过拟合是什么意思


推荐系统过拟合是什么意思


参考回答:

过拟合是指模型在训练数据上表现很好,但在新数据或实际应用场景中表现不佳的现象。在推荐系统中,它通常指系统过度依赖和拟合了用户在特定场景内的行为数据。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/615736

相关文章
|
30天前
|
存储 人工智能 算法
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
为了帮助更多人掌握大模型技术,尼恩和他的团队编写了《LLM大模型学习圣经》系列文档,包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构,基于LLM+RAG构建生产级企业知识库》和《从0到1吃透大模型的顶级架构》。这些文档不仅系统地讲解了大模型的核心技术,还提供了实战案例和配套视频,帮助读者快速上手。
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AIGC的底层技术:人工智能通用计算架构
探索AIGC的底层技术:人工智能通用计算架构
108 3
|
2月前
|
机器学习/深度学习 存储 算法
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
通过探索大语言模型(LLM)架构之间的潜在联系,我们可能开辟新途径,促进不同模型间的知识交流并提高整体效率。尽管Transformer仍是主流,但Mamba等线性循环神经网络(RNN)和状态空间模型(SSM)展现出巨大潜力。近期研究揭示了Transformer、RNN、SSM和矩阵混合器之间的深层联系,为跨架构的思想迁移提供了可能。本文深入探讨了这些架构间的相似性和差异,包括Transformer与RNN的关系、状态空间模型在自注意力机制中的隐含作用以及Mamba在特定条件下的重写方式。
118 7
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI人工智能大模型的架构演进
随着深度学习的发展,AI大模型(Large Language Models, LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。
128 9
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
3月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
3月前
|
消息中间件 搜索推荐 UED
Elasticsearch 作为推荐系统后端的技术架构设计
【8月更文第28天】在现代互联网应用中,推荐系统已经成为提高用户体验和增加用户粘性的重要手段之一。Elasticsearch 作为一个高性能的搜索和分析引擎,不仅能够提供快速的全文检索能力,还可以通过其强大的数据处理和聚合功能来支持推荐系统的实现。本文将探讨如何利用 Elasticsearch 构建一个高效且可扩展的推荐系统后端架构,并提供一些具体的代码示例。
253 0
|
4月前
|
搜索推荐 人工智能
人工智能LLM问题之大模型特殊能力如何解决
人工智能LLM问题之大模型特殊能力如何解决
|
4月前
|
搜索推荐 人工智能
人工智能LLM问题之大模型的涌现能力如何解决
人工智能LLM问题之大模型的涌现能力如何解决
|
4月前
|
存储 搜索推荐 数据安全/隐私保护
人工智能LLM问题之LLM AS RS如何解决
人工智能LLM问题之LLM AS RS如何解决
人工智能LLM问题之LLM AS RS如何解决