DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

InceptionV4/Inception-ResNet算法的简介(论文介绍)


      InceptionV4和Inception-ResNet是谷歌研究人员,2016年,在Inception基础上进行的持续改进,又带来的两个新的版本。


Abstract

       Very deep convolutional networks have been central to  the largest advances in image recognition performance in  recent years. One example is the Inception architecture that  has been shown to achieve very good performance at relatively  low computational cost. Recently, the introduction  of residual connections in conjunction with a more traditional  architecture has yielded state-of-the-art performance  in the 2015 ILSVRC challenge; its performance was similar  to the latest generation Inception-v3 network. This raises  the question of whether there are any benefit in combining  the Inception architecture with residual connections. Here  we give clear empirical evidence that training with residual  connections accelerates the training of Inception networks  significantly. There is also some evidence of residual Inception  networks outperforming similarly expensive Inception  networks without residual connections by a thin margin. We  also present several new streamlined architectures for both  residual and non-residual Inception networks. These variations  improve the single-frame recognition performance on  the ILSVRC 2012 classification task significantly. We further  demonstrate how proper activation scaling stabilizes  the training of very wide residual Inception networks. With  an ensemble of three residual and one Inception-v4, we  achieve 3.08% top-5 error on the test set of the ImageNet  classification (CLS) challenge.

摘要

       非常深的卷积网络是近年来图像识别性能最大进步的核心。一个例子是Inception 架构,已经证明它在相对较低的计算成本下获得了非常好的性能。最近,在2015年的ILSVRC挑战中,引入residual 连接和更传统的架构带来了最先进的性能;其性能类似于最新一代的Inception-v3网络。这就提出了这样一个问题:在将Inception 架构与residual 连接结合起来时是否有任何好处。在这里,我们给出了清晰的经验证据,证明使用residual 连接的训练显著加速了初始网络的训练。还有一些证据表明,residual Inception 架构网络的表现优于同样昂贵的Inception 网络,而无需residual 连接。我们还为残差和非残差初始网络提供了几种新的简化架构。这些变化显著提高了ILSVRC 2012分类任务的单帧识别性能。我们进一步证明了适当的激活比例如何稳定非常广泛的residual Inception网络的训练。利用三个residual 和一个Inception-v4,的集合,我们在ImageNet分类(CLS)挑战的测试集上实现了3.08% top-5 错误。

Conclusions

      We have presented three new network architectures in detail:

• Inception-ResNet-v1: a hybrid Inception version that has a similar computational cost to Inception-v3 from [15].

• Inception-ResNet-v2: a costlier hybrid Inception version with significantly improved recognition performance.

• Inception-v4: a pure Inception variant without residual connections with roughly the same recognition performance as Inception-ResNet-v2.

      We studied how the introduction of residual connections leads to dramatically improved training speed for the Inception architecture. Also our latest models (with and without residual connections) outperform all our previous networks, just by virtue of the increased model size.

结论

      我们详细介绍了三种新的网络架构:

•Inception-ResNet-v1:一个混合的Inception版本,其计算成本与[15]版本的incep -v3相似。

•Inception-ResNet-v2:一个成本更高的混合Inception版本,显著提高了识别性能。

•Inception-v4:一个没有residual 连接的Inception,与Inception-ResNet-v2的识别性能大致相同。

      我们研究了如何引入residual 连接来显著提高Inception体系结构的训练速度。此外,我们最新的模型(包括和不包括residual 连接)的性能优于所有以前的网络,这仅仅是因为模型的大小有所增加。



1、实验结果


1、Single crop -single model experimental results

Reported on the non-blacklisted subset of the validation set of ILSVRC 2012

单crop -单模型试验结果:在ILSVRC 2012验证集的非黑名单子集上的报告


2、144 crops evaluations -single model experimental results

采用了144个crops比single效果更好。


Reported on the all 50000 images of the validation set of ILSVRC 2012

3、Ensemble results with 144 crops/dense evaluation.

集成学习效果更好!

For Inception-v4(+Residual), the ensemble consists of one pure Inception-v4 and three Inception-ResNet-v2 models and were evaluated both on the validation and on the test-set.

4、训练过程中的速度比较

其中红色的Inception-resnet-v2效果性能最好

(1)、Top-5 error evolution of all four models (single model, single crop)

模型尺寸较大时,性能改进。

尽管残差版本收敛得更快,但最终的准确性似乎主要取决于模型的大小。


(2)、Top-1 error evolution of all four models (single model, single crop)

This paints a similar picture as the top-5 evaluation.

其中红色的Inception-resnet-v2效果性能最好



论文

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi.

Inception-v4, Inception-ResNetand the Impact of Residual Connections on Learning, 2016

https://arxiv.org/abs/1602.07261



Inception-v4算法的架构详解


DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的架构详解之详细攻略



Inception-ResNet算法的架构详解


     Inception-ResNet网络: 改进的Inception模块和残差连接的结合。引入residual connection直连,把Inception和ResNet结合起来,让网络又宽又深。


DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的架构详解之详细攻略




InceptionV4/Inception-ResNet算法的案例应用


后期更新……




相关文章
|
10月前
|
存储 并行计算 安全
我们自己的芯片指令集架构——龙芯架构简介
我们自己的芯片指令集架构——龙芯架构简介
1114 6
|
10月前
|
Web App开发 JavaScript 前端开发
【热门话题】WebKit架构简介
WebKit,开源浏览器引擎,支撑Safari、Chrome等,以其高效、稳定和跨平台特性著称。文章介绍了WebKit的起源、模块化设计,重点讲解了WebCore的DOM、CSSOM、Render Tree、布局、绘图与合成,以及JavaScriptCore的解析、编译和垃圾回收。WebKit2的多进程架构提升了稳定性和安全性。理解WebKit有助于优化网页性能和参与社区贡献。
91 0
|
1月前
|
存储 SQL 缓存
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。
|
5月前
|
Kubernetes 调度 算法框架/工具
NVIDIA Triton系列02-功能与架构简介
本文介绍了NVIDIA Triton推理服务器的功能与架构,强调其不仅适用于大型服务类应用,还能广泛应用于各类推理场景。Triton支持多种模型格式、查询类型和部署方式,具备高效的模型管理和优化能力,确保高性能和系统稳定性。文章详细解析了Triton的主从架构,包括模型仓库、客户端应用、通信协议和推理服务器的核心功能模块。
163 1
NVIDIA Triton系列02-功能与架构简介
|
5月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
85 2
|
5月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
77 0
|
8月前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
70 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
9月前
|
存储 消息中间件 数据库
分布式系统详解--架构简介(微服务)
分布式系统详解--架构简介(微服务)
116 0
|
10月前
|
存储 算法
图解Kmp算法——配图详解(超级详细)
图解Kmp算法——配图详解(超级详细)
|
10月前
|
消息中间件 存储 SQL
Flume【基础知识 01】简介 + 基本架构及核心概念 + 架构模式 + Agent内部原理 + 配置格式(一篇即可入门Flume)
【2月更文挑战第18天】Flume【基础知识 01】简介 + 基本架构及核心概念 + 架构模式 + Agent内部原理 + 配置格式(一篇即可入门Flume)
2232 0

热门文章

最新文章