AI:人工智能概念之机器学习、深度学习中常见关键词、参数等中英文对照(绝对干货)(三)

简介: 本博主基本收集了网上所有有关于ML、DL的中文解释词汇,机器学习、深度学习中常见关键词、参数等中英文对照,如有没有涉及之处,请留言,本博主将持续续修改、更新!圆小白自学ML、DL之梦!

L


initial最初的

implement执行

intuitive凭直觉获知的

incremental增加的

intercept截距

intuitious直觉

instantiation例子

indicator指示物,指示器

interative重复的,迭代的

integral积分

identical相等的;完全相同的

indicate表示,指出

invariance不变性,恒定性

impose把…强加于

intermediate中间的

interpretation解释,翻译


J


joint distribution联合概率


L


lieu替代

logarithmic对数的,用对数表示的

latent潜在的

Leave-one-out cross validation留一法交叉验证

M


magnitude巨大

mapping绘图,制图;映射

matrix矩阵

mutual相互的,共同的

monotonically单调的

minor较小的,次要的

multinomial多项的

multi-class classification二分类问题


N


nasty讨厌的

notation标志,注释

naïve朴素的


O


obtain得到

oscillate摆动

optimization problem最优化问题

objective function目标函数

optimal最理想的

orthogonal(矢量,矩阵等)正交的

orientation方向

ordinary普通的

occasionally偶然的


P


partial derivative偏导数

property性质

proportional成比例的

primal原始的,最初的

permit允许

pseudocode伪代码

permissible可允许的

polynomial多项式

preliminary预备

precision精度

perturbation 不安,扰乱

poist假定,设想

positive semi-definite半正定的

parentheses圆括号

posterior probability后验概率

plementarity补充

pictorially图像的

parameterize确定…的参数

poisson distribution柏松分布

pertinent相关的


Q


quadratic二次的

quantity量,数量;分量

query疑问的


R


regularization使系统化;调整

reoptimize重新优化

restrict限制;限定;约束

reminiscent回忆往事的;提醒的;使人联想…的(of)

remark注意

random variable随机变量

respect考虑

respectively各自的;分别的

redundant过多的;冗余的


S


susceptible敏感的

stochastic可能的;随机的

symmetric对称的

sophisticated复杂的

spurious假的;伪造的

subtract减去;减法器

simultaneously同时发生地;同步地

suffice满足

scarce稀有的,难得的

split分解,分离

subset子集

statistic统计量

successive iteratious连续的迭代

scale标度

sort of有几分的

squares平方


T


trajectory轨迹

temporarily暂时的

terminology专用名词

tolerance容忍;公差

thumb翻阅

threshold阈,临界

theorem定理

tangent正弦


U


unit-length vector单位向量


V


valid有效的,正确的

variance方差

variable变量;变元

vocabulary词汇

valued经估价的;宝贵的


W


wrapper包装



相关文章
|
7天前
|
机器学习/深度学习 分布式计算 数据可视化
对深度学习概念的基础理解与认识
一、神经网络的组成 人工神经网络(Artificial Neural Networks,简写为ANNs)是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。 这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的,并具有自学习和自适应的能力。神经网络类型众多,其中最为重要的是多层感知机。为了详细地描述神经网络,我们先从最简单的神经网络说起。 感知机 感知机是1957年,由Rosenblatt提出会,是神经网络和支持向量机的基础。 感知机是有生物学上的一个启发,他的参照对象和理论依据可以参照下图:(我们的大脑可以认为是一个神经网络,
30 9
对深度学习概念的基础理解与认识
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
AI人工智能大模型的架构演进
随着深度学习的发展,AI大模型(Large Language Models, LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。
27 9
|
1天前
|
机器学习/深度学习 人工智能 算法
探索AI的奥秘:机器学习入门之旅
【8月更文挑战第43天】本文将带领读者开启一段奇妙的学习之旅,探索人工智能背后的神秘世界。我们将通过简单易懂的语言和生动的例子,了解机器学习的基本概念、算法和应用。无论你是初学者还是有一定基础的学习者,都能从中获得启发和收获。让我们一起踏上这段激动人心的学习之旅吧!
|
5天前
|
机器学习/深度学习 人工智能 搜索推荐
如何让你的Uno Platform应用秒变AI大神?从零开始,轻松集成机器学习功能,让应用智能起来,用户惊呼太神奇!
【9月更文挑战第8天】随着技术的发展,人工智能与机器学习已融入日常生活,特别是在移动应用开发中。Uno Platform 是一个强大的框架,支持使用 C# 和 XAML 开发跨平台应用(涵盖 Windows、macOS、iOS、Android 和 Web)。本文探讨如何在 Uno Platform 中集成机器学习功能,通过示例代码展示从模型选择、训练到应用集成的全过程,并介绍如何利用 Onnx Runtime 等库实现在 Uno 平台上的模型运行,最终提升应用智能化水平和用户体验。
15 1
|
11天前
|
人工智能 运维 自然语言处理
AI战略丨构建未来: 生成式人工智能技术落地策略
GenAI 的技术落地需要企业进行周密地规划和持续地努力。企业必须从自身的战略出发, 综合考虑成本、效果和性能,制定合理的技术架构,通过全面的 AI 治理,实现可持续的创新和发展。
|
15天前
|
机器学习/深度学习 人工智能 运维
自动化测试的未来:AI与机器学习的融合
【8月更文挑战第29天】随着技术的快速发展,自动化测试正在经历一场革命。本文将探讨AI和机器学习如何改变软件测试领域,提供代码示例,并讨论未来趋势。
|
15天前
|
机器学习/深度学习 人工智能 Android开发
揭秘AI编程:从零开始构建你的第一个机器学习模型移动应用开发之旅:从新手到专家
【8月更文挑战第29天】本文将带你走进人工智能的奇妙世界,一起探索如何从零开始构建一个机器学习模型。我们将一步步解析整个过程,包括数据收集、预处理、模型选择、训练和测试等步骤,让你对AI编程有一个全面而深入的理解。无论你是AI初学者,还是有一定基础的开发者,都能在这篇文章中找到你需要的信息和启示。让我们一起开启这段激动人心的AI编程之旅吧! 【8月更文挑战第29天】在这篇文章中,我们将探索移动应用开发的奇妙世界。无论你是刚刚踏入这个领域的新手,还是已经有一定经验的开发者,这篇文章都将为你提供有价值的信息和指导。我们将从基础开始,逐步深入到更复杂的主题,包括移动操作系统的选择、开发工具的使用、
|
17天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何塑造我们的未来
【8月更文挑战第27天】在数字时代的浪潮中,人工智能(AI)已成为推动科技革命的核心力量。特别是机器学习,它像一位神秘的魔法师,通过数据和算法的魔咒,解锁了前所未有的智能应用。本文将带你探索机器学习的奥秘,了解它如何从理论走向实践,进而影响我们的生活、工作甚至思维方式。无论你是技术新手还是资深开发者,这篇文章都将为你揭示AI背后的原理,并通过生动的例子展示机器学习的实际应用。让我们一起跟随代码的步伐,开启一场关于智能与创新的奇妙之旅吧!
|
16天前
|
机器学习/深度学习 人工智能 算法
【悬念揭秘】ML.NET:那片未被探索的机器学习宝藏,如何让普通开发者一夜变身AI高手?——从零开始,揭秘构建智能应用的神秘旅程!
【8月更文挑战第28天】ML.NET 是微软推出的一款开源机器学习框架,专为希望在本地应用中嵌入智能功能的 .NET 开发者设计。无需深厚的数据科学背景,即可实现预测分析、推荐系统和图像识别等功能。它支持多种数据源,提供丰富的预处理工具和多样化的机器学习算法,简化了数据处理和模型训练流程。
30 1
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能的春天:探索AI在现代生活中的应用
【8月更文挑战第27天】本文将深入探讨人工智能(AI)如何在现代社会中扮演重要角色,从智能助手到自动驾驶汽车,再到医疗诊断和个性化教育。我们将通过实际代码示例,展示AI技术如何改变我们的生活和工作方式,以及它如何帮助我们解决一些最紧迫的社会问题。