DL框架之AutoKeras框架:深度学习框架AutoKeras框架的简介、特点、安装、使用方法详细攻略

简介: DL框架之AutoKeras框架:深度学习框架AutoKeras框架的简介、特点、安装、使用方法详细攻略

目录


AutoKeras框架的简介


AutoKeras框架的特点


AutoKeras的安装


AutoKeras框架的使用方法




AutoKeras框架的简介



       AutoKeras是一个开源的,基于 Keras 的新型 AutoML 库。AutoKeras 是一个用于自动化机器学习的开源软件库,提供自动搜索深度学习模型的架构和超参数的功能。

(1)、Keras 是一个用 Python 编写的高级神经网络 API,能够在 TensorFlow、CNTK 或 Theano 之上运行。它的意义在于可以实现快速实验。而能够以最小的延迟把想法变成结果是顺利进行研究的关键。


      AutoKeras比AutoML伟大的地方就是开源,哈哈,开源就等同于免费!这是我非常喜欢的一点!!!简而言之,AutoML是给有钱的公司玩的,像我们这样做学术研究的, AutoKeras简直妙不可言!!


官方网站:https://autokeras.com/

项目github:https://github.com/jhfjhfj1/autokeras

TensorFlow版本:https://github.com/melodyguan/enas

PyTorch 版本:https://github.com/carpedm20/ENAS-pytorch



AutoKeras框架的特点


1、AutoKeras 基于非常易于使用的深度学习数据库 Keras,使用 ENAS 的方法。ENAS 是 NAS 的最新版本,因此让 AutoKeras 具有高效、安装简单、参数可调、易修改等特点。



AutoKeras的安装


1、安装AutoKeras


pip install autokeras

image.png

image.png



2、测试

import autokeras as ak

clf = ak.ImageClassifier()

clf.fit(x_train, y_train)

results = clf.predict(x_test)

#导出模型

from autokeras import ImageClassifier

clf = ImageClassifier(verbose=True, augment=False)

clf.load_searcher().load_best_model().produce_keras_model().save('my_model.h5')

#可视化模型

from keras.models import load_model

model = load_model('my_model.h5') #See 'How to export keras models?' to generate this file before loading it.

from keras.utils import plot_model

plot_model(model, to_file='my_model.png')


AutoKeras框架的使用方法


1、举个栗子


from keras.datasets import mnist

from autokeras.image_supervised import ImageClassifier

if __name__ == '__main__':

   (x_train, y_train), (x_test, y_test) = mnist.load_data()

   x_train = x_train.reshape(x_train.shape + (1,))

   x_test = x_test.reshape(x_test.shape + (1,))

   clf = ImageClassifier(verbose=True)

   clf.fit(x_train, y_train, time_limit=12 * 60 * 60)

   clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)

   y = clf.evaluate(x_test, y_test)

   print(y)

2、再举一个栗子


# coding:utf-8

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

import numpy as np

import matplotlib.pyplot as plt

from scipy.misc import imresize

import cv2

from autokeras.image_supervised import ImageClassifier

from sklearn.metrics import accuracy_score

from keras.models import load_model

from keras.utils import plot_model

import time

start = time.time()

def read_img(path,class_num):

   imgName_list = os.listdir(path)

   n = len(imgName_list)

   # img_index,img_colummns,img_rgbSize = plt.imread(path+'/'+imgName_list[0]).shape

   img_index, img_colummns = [28,38]  # 这个设置很重要。如果你的电脑很好的话可以忽略设置。要不然内存不足的。

   print(img_index,img_colummns)

   data = np.zeros([n,img_index,img_colummns,1])

   label = np.zeros([n,1])

   class_number = 0

   for i in range(n):

       imgPath = path+'/'+imgName_list[i]

       data[i,:,:,0] = imresize(cv2.cvtColor(plt.imread(imgPath),cv2.COLOR_BGR2GRAY),[img_index,img_colummns])

       if (i)%(class_num) == 0:

           class_number = class_number+1

       label[i,0] = class_number

   return data,label

x_train,y_train = read_img('./data/re/train',80)

x_test,y_test = read_img('./data/re/test',20)

animal = ['bus', 'dinosaur', 'flower', 'horse', 'elephant']  # 动物类别对应 labelValue 为 [1,2,3,4,5]

# plt.imshow(x_test[0,:,:,0],cmap='gray')

# plt.show()

if __name__=='__main__':

   # 模型构建

   model = ImageClassifier(verbose=True)

   # 搜索网络模型

   model.fit(x_train,y_train,time_limit=1*60)

   # 验证最优模型

   model.final_fit(x_train,y_train,x_test,y_test,retrain=True)

   # 给出评估结果

   score = model.evaluate(x_test,y_test)

   # 识别结果

   y_predict = model.predict(x_test)

   # 精确度

   accuracy = accuracy_score(y_test,y_predict)

   # 打印出score与accuracy

   print('score:',score,'  accuracy:',accuracy)

   model_dir = r'./modelStructure/imgModel.h5'

   model_img = r'./modelStructure/imgModel_ST.png'

   # 保存可视化模型

   # model.load_searcher().load_best_model().produce_keras_model().save(model_dir)

   # 加载模型

   # automodel = load_model(model_dir)

   # 输出模型 structure 图

   # plot_model(automodel, to_file=model_img)

   end = time.time()

   print(end-start)

 


相关文章
|
3月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
209 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
18天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
89 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
2月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
61 7
|
3月前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
725 1
深度学习环境搭建笔记(一):detectron2安装过程
|
2月前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
249 3
|
5月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
66 0
|
5月前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
78 0
|
5月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习框架之争:全面解析TensorFlow与PyTorch在功能、易用性和适用场景上的比较,帮助你选择最适合项目的框架
【8月更文挑战第31天】在深度学习领域,选择合适的框架至关重要。本文通过开发图像识别系统的案例,对比了TensorFlow和PyTorch两大主流框架。TensorFlow由Google开发,功能强大,支持多种设备,适合大型项目和工业部署;PyTorch则由Facebook推出,强调灵活性和速度,尤其适用于研究和快速原型开发。通过具体示例代码展示各自特点,并分析其适用场景,帮助读者根据项目需求和个人偏好做出明智选择。
164 0
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
156 6
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
131 16