MAT之SA:T1编写主函数法和T2Matlab自带的SA工具箱GUI法,两种方法实现对一元函数优化求解

简介: MAT之SA:T1编写主函数法和T2Matlab自带的SA工具箱GUI法,两种方法实现对一元函数优化求解

输出结果


https://imgconvert.csdnimg.cn/aHR0cHM6Ly9pbWFnZXMyMDE4LmNuYmxvZ3MuY29tL2Jsb2cvMTMxMzQ3NS8yMDE4MDMvMTMxMzQ3NS0yMDE4MDMwMTIwMTc1NzMyMi00Mjg4NDMxMTQuZ2lm

实现代码

%SA:T1法利用Matlab编写主函数实现对一元函数优化求解——Jason niu

x = 1:0.01:2;

y = sin(10*pi*x) ./ x;  

figure

plot(x,y,'linewidth',1.5)

ylim([-1.5, 1.5])

xlabel('x')

ylabel('y')

title('SA:T1法利用Matlab编写主函数实现对一元函数y = sin(10*pi*x) / x优化求解—Jason niu')

hold on

[maxVal,maxIndex] = max(y);

plot(x(maxIndex), maxVal, 'r*','linewidth',2)

text(x(maxIndex), maxVal, {['    X: ' num2str(x(maxIndex))];['    Y: ' num2str(maxVal)]})  

hold on

[minVal,minIndex] = min(y);

plot(x(minIndex), minVal, 'gs','linewidth',2)

text(x(minIndex), minVal, {['    X: ' num2str(x(minIndex))];['    Y: ' num2str(minVal)]})



相关文章
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
- **算法理论:** 利用PSO优化的CNN-GRU,结合CNN的特征提取和GRU的记忆机制,进行时间序列预测。 - **CNN:** 通过卷积捕获序列的结构信息。 - **GRU:** 简化的LSTM,处理序列依赖。 - **预测步骤:** 1. 初始化粒子群,每粒子对应一组模型参数。 2. 训练并评估CNN-GRU模型的验证集MSE。 3. 使用PSO更新参数,寻找最佳配置。 4. 迭代优化直至满足停止准则。 ```
|
20小时前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
5天前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
5天前
|
传感器 算法 数据安全/隐私保护
基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真
```markdown 探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。 ```
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ>0增强集成效果,提高预测准确性和系统稳健性。
|
17天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
19天前
|
传感器 监控 算法
基于虚拟力优化的无线传感器网络覆盖率matlab仿真
**摘要:** 本文探讨了基于虚拟力优化提升无线传感器网络(WSNs)覆盖率的方法。通过在MATLAB2022a中仿真,显示了优化前后网络覆盖率对比及收敛曲线。虚拟力优化算法模拟物理力,以优化传感器节点布局,防止重叠并吸引至目标区域,同时考虑墙壁碰撞。覆盖计算利用平面扫描法评估圆形和正方形传感器的覆盖范围。算法通过迭代优化网络性能,以提高WSNs的监控能力。
|
9天前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
17天前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
20天前
|
算法 安全 数据挖掘
随机数生成方法及其在Matlab中的应用
随机数生成方法及其在Matlab中的应用

热门文章

最新文章