智能汽车中人工智能算法应用及其安全综述

简介: 智能汽车中人工智能算法应用及其安全综述

智能汽车中的智能化技术,可分为3 个模块:环境感知层、决策规划层和运动控制层。环境感知层利用环境感知传感器(视觉传感器、激光雷达、毫米波雷达、超声波雷达、里程计、GPS 等)感知车辆行驶环境信息,利用车辆自身状态传感器(如轮速检测等)感知车辆自身状态。经过智能化模型处理后,感知出车辆周围环境(如绝对位置、车道线、周围车辆相对位置、行人位置、动态静态障碍物类型和位置、行为预测等),决策规划层按照驾驶决策算法将空间、时间上的独立信息、互补信息和冗余信息进行理解,根据实时感知到的车辆周围环境信息,实时决策车辆可执行的驾驶指令并规划出行程轨迹。运动控制层接收决策规划层的驾驶指令,控制车辆稳定运行的同时保证车辆的控制精度。 随机性和模糊性导致不确定性是人类思维活动中最基本的特性。对人类思维模拟、研究的人工智能技术,也具有不确定性的特点。

基于视觉的感知算法 1) 目标检测算法 目标检测的任务是找出图像或视频中的感兴趣物体,同时检测出它们的位置和大小,是机器视觉领域的核心问题之一,至今已有将近二十年的研究历史。作为计算机视觉的基本问题,目标检测构成了许多计算机视觉任务的基础,目前目标检测算法已广泛应用于许多现实世界的应用,如智能驾驶、机器人视觉、视频监控等。从2012 年开始,因大数据技术和硬件计算能力的提升,卷积神经网络(convolutional neural networks, CNN)再一次受到研究者的关注,CNN 提取到的特征和传统手工特征相比,具有更鲁棒和更深层的特性,这也引导研究者将CNN 应用到目标检测领域中。用深度学习解决目标检测算法,可被分为两组:两阶段法和一阶段法。两阶段法采用“由粗到细”的检测策略,而一阶段法利用神经网络模型,一步完成检测任务。

2) 车道线检测算法 基于视觉的车道线检测技术已经广泛应用于辅助驾驶系统,如驾驶员熟悉的私家车车道保持功能,驾驶车辆时,如果车辆压在车道线上太久,则驾驶辅助系统会提醒驾驶员调整车辆位置。

3) 目标跟踪算法 视觉跟踪通过在连续的视频图像序列中估计感兴趣目标的位置或所在区域,结合历史运动信息,预测其未来的运动信息,对智能车分析理解其周围环境至关重要。在线视觉跟踪的基本框图如图1所示。

微信图片_20210828134848.jpg

4) 行为预测算法 行为预测功能会根据当前以及历史感知来预测智能车周围其他运动物体(如其他车辆、行人、非机动车等)的未来运动轨迹。为使智能车在道路上安全有效地行驶,智能汽车不仅应感知其周围其他运动元素的状态,还应主动预测其未来的运动轨迹,有助于智能车提前做出最优决策。机器学习尤其是深度学习的最新进展为解决智能车行为预测提供了有力工具。

预期功能安全基于场景来进行分析,ISO/PAS 21448 标准将场景划分为如图2 所示的4 个区间,分别为:1)已知-安全场景;2)已知-危险场景;3)未知-危险场景;4)未知-安全场景。预期功能安全研究的目的是将已知危险区域和未知危险区域缩小至可接收的范围内,即保证场景尽可能控制在安全区域。

微信图片_20210828134953.jpg

目录
打赏
0
0
0
0
2
分享
相关文章
阿里云携手DeepSeek,AI应用落地五折起!
近年来,人工智能技术飞速发展,越来越多的企业希望借助AI的力量实现数字化转型,提升效率和竞争力。然而,AI应用的开发和落地并非易事,企业往往面临着技术门槛高、成本投入大、落地效果难以保障等挑战。
25 1
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
Airweave:快速集成应用数据打造AI知识库的开源平台,支持多源整合和自动同步数据
Airweave 是一个开源工具,能够将应用程序的数据同步到图数据库和向量数据库中,实现智能代理检索。它支持无代码集成、多租户支持和自动同步等功能。
66 14
从大规模恶意攻击 DeepSeek 事件看 AI 创新隐忧:安全可观测体系建设刻不容缓
在近来发生的 DeepSeek 遭遇的安全事件中,我们可以看到当前人工智能行业在网络安全方面的脆弱性,同时也为业界敲响了警钟。唯有通过全行业的协同努力,加强整体、完善的网络安全可观测建设,才能为 AI 技术的创新和发展构建一个安全而稳固的环境。我们期盼并相信,在攻克这些网络安全难题之后,AI 创新将迎来更加安全、灿烂的未来。
Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用
Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。
138 27
现在最火的AI是怎么应用到体育行业的
AI在体育行业的应用日益广泛,涵盖数据分析、伤病预防、观众体验、裁判辅助等多个领域。通过传感器和可穿戴设备,AI分析运动员表现,提供个性化训练建议;预测伤病风险,制定康复方案;优化比赛预测和博彩指数;提升观众的个性化内容推荐和沉浸式观赛体验;辅助裁判判罚,提高准确性;发掘青训人才,优化训练计划;智能管理场馆运营和票务;自动生成媒体内容,提供实时翻译;支持电竞分析和虚拟体育赛事;并为运动员提供个性化营养和健康管理方案。未来,随着技术进步,AI的应用将更加深入和多样化。
PolarDB 开源基础教程系列 7.4 应用实践之 AI大模型外脑
PolarDB向量数据库插件通过实现通义大模型AI的外脑,解决了通用大模型无法触达私有知识库和产生幻觉的问题。该插件允许用户将新发现的知识和未训练的私有知识分段并转换为向量,存储在向量数据库中,并创建索引以加速相似搜索。当用户提问时,系统将问题向量化并与数据库中的向量进行匹配,找到最相似的内容发送给大模型,从而提高回答的准确性和相关性。此外,PolarDB支持多种编程语言接口,如Python,使数据库具备内置AI能力,极大提升了数据处理和分析的效率。
35 4
Cursor 为低代码加速,AI 生成应用新体验!
通过连接 Cursor,打破了传统低代码开发的局限,我们无需编写一行代码,甚至连拖拉拽这种操作都可以抛诸脑后。只需通过与 Cursor 进行自然语言对话,用清晰的文字描述自己的应用需求,就能轻松创建出一个完整的低代码应用。
621 8
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
881 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用

热门文章

最新文章