智能汽车中人工智能算法应用及其安全综述

简介: 智能汽车中人工智能算法应用及其安全综述

智能汽车中的智能化技术,可分为3 个模块:环境感知层、决策规划层和运动控制层。环境感知层利用环境感知传感器(视觉传感器、激光雷达、毫米波雷达、超声波雷达、里程计、GPS 等)感知车辆行驶环境信息,利用车辆自身状态传感器(如轮速检测等)感知车辆自身状态。经过智能化模型处理后,感知出车辆周围环境(如绝对位置、车道线、周围车辆相对位置、行人位置、动态静态障碍物类型和位置、行为预测等),决策规划层按照驾驶决策算法将空间、时间上的独立信息、互补信息和冗余信息进行理解,根据实时感知到的车辆周围环境信息,实时决策车辆可执行的驾驶指令并规划出行程轨迹。运动控制层接收决策规划层的驾驶指令,控制车辆稳定运行的同时保证车辆的控制精度。 随机性和模糊性导致不确定性是人类思维活动中最基本的特性。对人类思维模拟、研究的人工智能技术,也具有不确定性的特点。

基于视觉的感知算法 1) 目标检测算法 目标检测的任务是找出图像或视频中的感兴趣物体,同时检测出它们的位置和大小,是机器视觉领域的核心问题之一,至今已有将近二十年的研究历史。作为计算机视觉的基本问题,目标检测构成了许多计算机视觉任务的基础,目前目标检测算法已广泛应用于许多现实世界的应用,如智能驾驶、机器人视觉、视频监控等。从2012 年开始,因大数据技术和硬件计算能力的提升,卷积神经网络(convolutional neural networks, CNN)再一次受到研究者的关注,CNN 提取到的特征和传统手工特征相比,具有更鲁棒和更深层的特性,这也引导研究者将CNN 应用到目标检测领域中。用深度学习解决目标检测算法,可被分为两组:两阶段法和一阶段法。两阶段法采用“由粗到细”的检测策略,而一阶段法利用神经网络模型,一步完成检测任务。

2) 车道线检测算法 基于视觉的车道线检测技术已经广泛应用于辅助驾驶系统,如驾驶员熟悉的私家车车道保持功能,驾驶车辆时,如果车辆压在车道线上太久,则驾驶辅助系统会提醒驾驶员调整车辆位置。

3) 目标跟踪算法 视觉跟踪通过在连续的视频图像序列中估计感兴趣目标的位置或所在区域,结合历史运动信息,预测其未来的运动信息,对智能车分析理解其周围环境至关重要。在线视觉跟踪的基本框图如图1所示。

微信图片_20210828134848.jpg

4) 行为预测算法 行为预测功能会根据当前以及历史感知来预测智能车周围其他运动物体(如其他车辆、行人、非机动车等)的未来运动轨迹。为使智能车在道路上安全有效地行驶,智能汽车不仅应感知其周围其他运动元素的状态,还应主动预测其未来的运动轨迹,有助于智能车提前做出最优决策。机器学习尤其是深度学习的最新进展为解决智能车行为预测提供了有力工具。

预期功能安全基于场景来进行分析,ISO/PAS 21448 标准将场景划分为如图2 所示的4 个区间,分别为:1)已知-安全场景;2)已知-危险场景;3)未知-危险场景;4)未知-安全场景。预期功能安全研究的目的是将已知危险区域和未知危险区域缩小至可接收的范围内,即保证场景尽可能控制在安全区域。

微信图片_20210828134953.jpg

相关文章
|
8天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
8天前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
8天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
41 3
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
80 2
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
6天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
36 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
2天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
19 4
|
2天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗诊断中的应用及前景展望
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、挑战与未来发展趋势。通过分析AI技术如何助力提高诊断准确率、缩短诊断时间以及降低医疗成本,揭示了其在现代医疗体系中的重要价值。同时,文章也指出了当前AI医疗面临的数据隐私、算法透明度等挑战,并对未来的发展方向进行了展望。
|
4天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗诊断中的应用与挑战
本文旨在揭示人工智能(AI)技术如何革新医疗诊断领域,提高疾病预测的准确性和效率。通过分析AI在图像识别、数据分析等方面的应用实例,本文将探讨AI技术带来的便利及其面临的伦理和法律问题。文章还将提供代码示例,展示如何使用AI进行疾病诊断的基本过程。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景
人工智能在医疗诊断中的应用与前景