大数据技术之Hadoop3.x笔记

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据技术之Hadoop3.x笔记

一、Hadoop入门

1、常用端口号
hadoop3.x 
    HDFS NameNode 内部通常端口:8020/9000/9820
    HDFS NameNode 对用户的查询端口:9870
    Yarn查看任务运行情况的:8088
    历史服务器:19888
hadoop2.x 
    HDFS NameNode 内部通常端口:8020/9000
    HDFS NameNode 对用户的查询端口:50070
    Yarn查看任务运行情况的:8088
    历史服务器:19888
2、常用的配置文件
3.x core-site.xml  hdfs-site.xml  yarn-site.xml  mapred-site.xml workers
2.x core-site.xml  hdfs-site.xml  yarn-site.xml  mapred-site.xml slaves

二、HDFS

1、HDFS文件块大小(面试重点)
    硬盘读写速度
    在企业中  一般128m(中小公司)   256m (大公司)
2、HDFS的Shell操作(开发重点)
3、HDFS的读写流程(面试重点)

三、Map Reduce

1、InputFormat
    1)默认的是TextInputformat  kv  key偏移量,v :一行内容
    2)处理小文件CombineTextInputFormat 把多个文件合并到一起统一切片
2、Mapper 
    setup()初始化;  map()用户的业务逻辑; clearup() 关闭资源;
3、分区
    默认分区HashPartitioner ,默认按照key的hash值%numreducetask个数
    自定义分区
4、排序
    1)部分排序  每个输出的文件内部有序。
    2)全排序:  一个reduce ,对所有数据大排序。
    3)二次排序:  自定义排序范畴, 实现 writableCompare接口, 重写compareTo方法
        总流量倒序  按照上行流量 正序
5、Combiner 
    前提:不影响最终的业务逻辑(求和 没问题   求平均值)
    提前聚合map  => 解决数据倾斜的一个方法
6、Reducer
    用户的业务逻辑;
    setup()初始化;reduce()用户的业务逻辑; clearup() 关闭资源;
7、OutputFormat
    1)默认TextOutputFormat  按行输出到文件
    2)自定义

四、Yarn

1、Yarn的工作机制(面试题)
    
2、Yarn的调度器
    1)FIFO/容量/公平
    2)apache 默认调度器  容量; CDH默认调度器 公平
    3)公平/容量默认一个default ,需要创建多队列
    4)中小企业:hive  spark flink  mr  
    5)中大企业:业务模块:登录/注册/购物车/营销
    6)好处:解耦  降低风险  11.11  6.18  降级使用
    7)每个调度器特点:
        相同点:支持多队列,可以借资源,支持多用户
        不同点:容量调度器:优先满足先进来的任务执行
                公平调度器,在队列里面的任务公平享有队列资源
    8)生产环境怎么选:
        中小企业,对并发度要求不高,选择容量
        中大企业,对并发度要求比较高,选择公平。
3、开发需要重点掌握:
    1)队列运行原理    
    2)Yarn常用命令
    3)核心参数配置
    4)配置容量调度器和公平调度器。
    5)tool接口使用。
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
28天前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
122 4
|
2月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
1月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
2月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
|
2月前
|
存储 分布式计算 算法
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。
|
2月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。
|
6月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
283 79
|
4月前
|
人工智能 分布式计算 大数据
MCP、MaxFrame与大数据技术全景解析
本文介绍了 MCP 协议、MaxFrame 分布式计算框架以及大数据基础设施建设的相关内容。MCP(Model Context Protocol)是一种开源协议,旨在解决 AI 大模型与外部数据源及工具的集成问题,被比喻为大模型的“USB 接口”,通过统一交互方式降低开发复杂度。其核心架构包括 Client、Server、Tool 和 Schema 四个关键概念,并在百炼平台中得到实践应用。MaxFrame 是基于 Python 的高性能分布式计算引擎,支持多模态数据处理与 AI 集成,结合 MaxCompute 提供端到端的数据处理能力。
|
5月前
|
数据采集 分布式计算 数据可视化
大数据项目成功的秘诀——不只是技术,更是方法论!
大数据项目成功的秘诀——不只是技术,更是方法论!
144 8
大数据项目成功的秘诀——不只是技术,更是方法论!
|
传感器 分布式计算 安全
Java 大视界 -- Java 大数据在智能安防入侵检测系统中的多源数据融合与分析技术(171)
本文围绕 Java 大数据在智能安防入侵检测系统中的应用展开,剖析系统现状与挑战,阐释多源数据融合及分析技术,结合案例与代码给出实操方案,提升入侵检测效能。