单机顶集群的大数据技术来了

简介: 大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。

大数据时代的分布式数仓(如 MPP)是个热门技术,甚至到了提到数据仓库言必称分布式的地步。
但是,分布式数仓真有必要吗?毕竟这些分布式数仓产品都不便宜,无论是采购成本还是运维成本都很高。是不是有低成本轻量级的方案呢?

其实,结构化数据计算任务(数据仓库的主要目标)涉及的数据量通常并不会非常大。比如一个有数千万帐户的银行,一年的交易量也就是数亿条,大概也就是几 G 到几十 G 的规模;有个几百万帐户的电商系统能积累的数据也还是这种规模。即便是少数有巨大数据量的头部企业,也还是会有大量任务只涉及少量数据。单个计算任务的数据规模上百 G 并不多,很难积累到很多大数据厂商宣称的 PB 级。
从另一个方面也可以看出来,大多数分布式数仓的节点数也不是很多,经常在十个左右或更少。个别头部企业的计算中心可能会有数千甚至上万个节点,但单个任务也只会用到其中几个到十几个节点。比如 SnowFlake 销售数量较多的 Medium 型数仓,也只有 4 个节点而已。这才是分布式数仓的主流规模。一个 PB 级数据量的任务,一个节点处理 1T(通常也需要数小时),也需要 1000 个节点,这显然不是常态。

按说单体数据库就能轻松处理几十 G 规模的数据,但实际上并不是,跑批动不动几小时,查询一次几分钟也是家常便饭。于是,用户就会琢磨着上分布式了。
这又是为什么?
这有两方面原因。一方面是这些计算任务的数据量虽然不大,但却有相当的复杂度,经常会涉及多次关联。另一方面是数据库采用的 SQL 语法不能方便地描述这些复杂的运算,勉强写出来的代码不会被数据库优化,导致计算量过大。换句话说,SQL 数据库无法充分利用硬件资源,只能寄希望于分布式扩容。

esProc SPL 可以。
esProc SPL 是开源的轻量级计算引擎,作为纯 Java 开发的程序,可以直接无缝嵌入到 Java 应用中,无须数据库也能获得高性能计算的体验。

esProc SPL 常常能跑出远超 MPP 的性能,单机顶集群。
国家天文台的星体聚类任务,数据规模仅约 5000 万行,某分布式数据库动用 100CPU 跑 500 万行也要 3.8 小时,跑完 5000 万行估算要 15 天(平方级复杂度)。esProc SPL 在 16CPU 单机上跑全量 5000 万数据不到 3 小时。
某银行的贷款业务跑批,HIVE 集群 10 节点,1300 行 SQL 跑 4300 秒;esProc SPL 用 34 行代码在单机上跑 1700 秒。
某银行的反洗钱准备,11 节点的 Vertica 跑出 1.5 小时,esProc SPL 单机 26 秒,竟然把跑批任务跑成了查询!
某电商漏斗运算,SnowFlake 的 Medium 型集群(4 节点)3 分钟跑不出结果,用户放弃。esProc SPL 在单机上 10 秒完成。
某时空碰撞任务,ClickHouse 集群 5 节点 1800 秒,被 esProc SPL 优化成单机 350 秒。
…….
这些实例还可以进一步说明,大量的实际任务的集群节点数并不多,这类场景几乎都可以被 esProc 用单机解决。

esProc SPL 如何做到这一点?
在工程方面,esProc 也采用了压缩、列存、索引以及向量式计算等 MPP 常用的提速技术;更重要的,esProc 没有再基于 SQL,而是采用了自有的程序语言 SPL,其中有不少 SQL 理论基础下无法实现的高性能存储机制和算法类库:

有了这些基础,就容易编写出更低计算复杂度的代码,有效地避免 SQL 代码计算量过大的问题,充分利用硬件资源,做到单机顶集群。
关于 esProc 的性能优势,在 快出数量级的性能是怎样炼成的 有通俗的解释 写着简单跑得又快的数据库语言 SPL 中深入解释为什么 SQL 无法写出高性能代码。
上图中列出了部分 SPL 的高性能技术,可以看到 esProc 也支持集群计算。但由于 esProc 的高性能,在实践任务中都仅用单机就实现原有集群的能力。结果,除了部分为了应对高并发和热备的简单集群场景外,esProc 的集群计算能力一直没有机会被深度历练,甚至一定程度可以说还不够成熟。

看个具体的例子,前述那个时空碰撞问题,总数据量约 250 亿行,SQL 看起来并不算很复杂:

WITH DT AS ( SELECT DISTINCT id, ROUND(tm/900)+1 as tn, loc FROM T WHERE tm<3*86400)
SELECT * FROM (
    SELECT B.id id, COUNT( DISINCT B.tn ) cnt
    FROM DT AS A JOIN DT AS B ON A.loc=B.loc AND A.tn=B.tn
    WHERE A.id=a AND B.id<>a
GROUP BY id )
ORDER BY cnt DESC
LIMIT 20

传统数据库跑得太慢,用户转而求助于 ClickHouse,结果用了 5 节点的集群环境下也跑了 30 分钟多,达不到期望。同样数据量,SPL 代码只用一个节点不到 6 分钟即可完成计算,超出了用户期望。考虑到硬件资源的差距,SPL 相当于比 ClickHouse 快了 25 倍以上。
QQ_1732069277690.png

(SPL 代码写在格子里,这和普通程序语言很不像,参考乾学院 写在格子里的程序语言 )
SQL 中的 DISTINCT 计算会涉及 HASH 和比对,数据量很大时计算量也会很大,然后还有自关联以及进一步的 COUNT(DISTINCT),都会严重拖累性能,而 SPL 可以充分利用 SQL 没有的有序分组和序号定位,有效避免复杂度很高的自关联和 DISTINCT 运算。虽然在存储效率上比 ClickHouse 并没有优势,Java 也会略慢于 C++,但仍然获得了数量级的性能提升。

跑出 300 公里时速不见得总要高铁(分布式 MPP),家用小轿车(esProc SPL) 也可以。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
存储 人工智能 大数据
云栖2025|阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
阿里云在云栖大会发布“湖流一体”数智平台,推出DLF-3.0全模态湖仓、实时计算Flink版升级及EMR系列新品,融合实时化、多模态、智能化技术,打造AI时代高效开放的数据底座,赋能企业数字化转型。
998 0
|
6月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
466 4
|
7月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
9月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
6月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
6月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
6月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
|
11月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
565 79
|
7月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合

热门文章

最新文章