AI人工智能走出实验室,走进生产车间,依然面临着巨大挑战

简介: 根据埃森哲《中国企业人工智能应用之道》面对全球企业高管的调研显示:高达79%的中国企业高管认为,他们必须借助人工智能来实现业务增长目标。

国内企业AI落地现状

根据埃森哲《中国企业人工智能应用之道》面对全球企业高管的调研显示:高达79%的中国企业高管认为,他们必须借助人工智能来实现业务增长目标。

但其中,有52%的中国企业高管人员坦言,人工智能试点容易,但当设法将人工智能推广至全企业时,难度较大。

高质量数据缺乏、行业壁垒高、应用场景不清晰是当前人工智能与行业深度融合的主要瓶颈,应用场景难融合也意味着AI企业落地难。

①我国人力资源充裕,很多传统行业的数字化意愿并不强烈。到了AI时代,企业的数据基础不扎实,也就难以承载起上层的智能化转型。

②如今算力需求呈现指数级增长,而无论是算力设备的购置费用还是技术人员对算法优化的时间、人员和金钱的巨大投入。

③数据是制约AI成功落地的一大因素。如果缺少统一、标准化、高质量的数据,AI应用可能就是无米之炊、无源之水。

AI让企业开始习惯于大量依赖机器帮忙做决策。在这个过程中会带来隐私保护、AI可信度、伦理和社会的问题等,这些都是AI在落地过程中需要解决的。

大多数企业的AI创新都是点状的、实验性质的、局部的创新,缺少规模化、商业化、运行态的布局。

因此,人工智能在互联网领域的攻城掠地有多顺利,在实体经济中的落地就有多困难。
image.png
AI落地的行业场景化应用

各行业当下面临的痛点有所不同,如金融行业面临成本压力、产品服务单一、交易欺诈等;医疗与教育行业资源分配不均的问题突出;

也就是说,人工智能需求广阔,其商业模式是渗透到各行各业,提高行业效率。这一进程需要时间和持续投入,但也是生产力迭代趋势。

未来还是要结合场景和用户体验去重新设计,用 AI 本身的方式思考,才会产生真正的 AI 应用。

未来,可以肯定的是人工智能将能够在特定领域实现快速突破,而企业需要从自身所处的商业、工业和生存环境中选择恰当的角度,去定义特定场景,从而让人工智能可以针对性突破并解决问题。
image.png
目前AI技术正处于普及爆发的前夜

2018年,AI领域投资事件共410起,投资总额1078亿元。人工智能逐渐挤满了几乎中国所有的主流投资机构和产业资本。

资本华丽登台的另一面是,AI落地的过程不太优美。数据显示,2017年,90%以上AI企业处于亏损阶段,商业化落地成为众多人工智能企业发展的痛点。

AI将成为未来企业发展的一个必选项和企业的关键竞争力,这是毋庸置疑的。

对于各个公司、行业和国家来说,人工智能将是未来几十年里最大的商业机会。

预计从现在到2030年,人工智能的发展将使全球GDP增长14%,相当于对世界经济额外贡献了15.7万亿美元,其中AI将带动中国GDP增加7万亿美元。
image.png
商业落地呼唤标准配套

只有把应用做起来,底层AI芯片、软件技术才能够在应用过程中更扎实。

人工智能端到端完成一个项目落地至少需要3—6个月的时间,整个过程存在一定的复杂性,需要有一系列选型方案的指南。

以前产业界更侧重于算法,近几年算法开始和工程开源齐头并进,业内越来越重视软硬件协同发展,人工智能与大数据、云计算等新型信息技术融合越来越深入。

今年7月发布的《人工智能标准化白皮书(2021版)》中指出,深度学习框架依赖的生态建设、测试体系不够全面是我国人工智能产业发展目前遇到的两大问题。

我国深度学习框架起步较晚,在算法、芯片、终端和场景应用方面尚未摆脱对国外深度学习框架的依赖。

然而,国内人工智能测试体系尚未形成,现有测试基准的测试内容和模型高度重复,还未形成成熟的功能、性能测试基准,这将制约人工智能产品打开市场、获得市场信任度。
image.png
国内AI标准化进程加速

规范标准也是国内人工智能现阶段发展的关键词之一。赛迪顾问统计数据显示,2019年,中国人工智能产业规模达到1291.4亿元,同比增速为30.8%。

预计到2022年,中国人工智能产业规模达到2621.5亿元。

国内人工智能产业高速发展,场景应用逐渐丰富化,随着产业复杂度的提高,相关标准也亟待解决配套问题。

在2020年7月印发了《国家新一代人工智能标准体系建设指南》。
image.png
人工智能技术落地的关键环节

①技术的突破:一家成功的人工智能公司必须有一定的技术积累和壁垒。

②场景的探索:找到一个商业上可行、可拓展性良好,并且技术上可实现的场景是非常困难的,很多优秀的技术公司都在这个环节投入了大量的精力。

③团队的建设和成长:起步阶段顶尖的技术和商业团队的搭建需要大量工作,快速成长的过程中人员不断扩充也会带来各种问题,如何增效降本、保持创新风气很关键。

④标准制定:对具体行业具体场景下的人工智能技术应用进行规范化、标准化,保证整个行业的生态健康发展。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

目录
相关文章
|
2月前
|
人工智能 安全 算法
上交大、上海人工智能实验室开源首个多轮安全对齐数据集 SafeMTData
最近,以 OpenAI o1 为代表的 AI 大模型的推理能力得到了极大提升,在代码、数学的评估上取得了令人惊讶的效果。OpenAI 声称,推理可以让模型更好的遵守安全政策,是提升模型安全的新路径。
|
3天前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
在通义灵码 2.0 发布会上,阿里云通义实验室自然语言处理方向负责人黄非分享了代码大模型的演进。过去一年来,随着大模型技术的发展,特别是智能体技术的深入应用,通义灵码也在智能体的基础上研发了针对于整个软件研发流程的不同任务的智能体,这里既包括单智能体,也包括多智能体合并框架,在这样的基础上我们研发了通义灵码2.0。
|
18天前
|
人工智能 自动驾驶 机器人
AI元年:2024年人工智能发展大事纪
3分钟了解2024年人工智能AI领域都发生了哪些改变我们生活和生产方式的大事儿。
126 2
AI元年:2024年人工智能发展大事纪
|
18天前
|
人工智能 自然语言处理 算法
打破AI信息差:2024年20款好用的人工智能工具大盘点
本文带你了解20款值得一试的AI工具,帮助你在内容创作、图像设计、音频视频编辑等领域提高效率、激发创意。
119 1
打破AI信息差:2024年20款好用的人工智能工具大盘点
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与情感计算:AI如何理解人类情感
人工智能与情感计算:AI如何理解人类情感
100 20
|
23天前
|
人工智能 安全 搜索推荐
新手指南:人工智能poe ai 怎么用?国内使用poe记住这个方法就够了!
由于国内网络限制,许多用户在尝试访问Poe AI时面临障碍。幸运的是,现在国内用户也能轻松畅玩Poe AI,告别繁琐的设置,直接开启AI创作之旅!🎉
115 13
|
1月前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
2月前
|
人工智能 编解码 BI
LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型
LEOPARD是由腾讯AI Lab西雅图实验室推出的视觉语言模型,专为处理含有大量文本的多图像任务设计。该模型通过自适应高分辨率多图像编码模块和大规模多模态指令调优数据集,在多个基准测试中表现卓越,适用于自动化文档理解、教育和学术研究、商业智能和数据分析等多个应用场景。
51 2
LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型
|
1月前
|
人工智能 自然语言处理 搜索推荐
AI 赋能:开启内容生产效率革命的密钥》
在数字化时代,AI技术正成为提高内容生产效率的关键工具。本文探讨了AI在文章写作、文案创作、翻译、图像识别与生成及数据分析等方面的应用,分析了其提高效率的方式、带来的优势与挑战,并通过新闻媒体、营销、教育等行业案例,展望了AI在内容生产领域的未来。
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能与医疗健康:AI如何改变生命科学
【10月更文挑战第31天】人工智能(AI)正深刻改变医疗健康和生命科学领域。本文探讨AI在蛋白质结构预测、基因编辑、医学影像诊断和疾病预测等方面的应用,及其对科研进程、医疗创新、服务效率和跨学科融合的深远影响。尽管面临数据隐私和伦理等挑战,AI仍有望为医疗健康带来革命性变革。
129 30