MaxCompute Spark 资源使用优化详解

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本文主要讲解MaxCompute Spark资源调优,目的在于在保证Spark任务正常运行的前提下,指导用户更好地对Spark作业资源使用进行优化,极大化利用资源,降低成本。

本文作者:吴数傑 阿里云智能 开发工程师

1. 概述

本文主要讲解MaxCompute Spark资源调优,目的在于在保证Spark任务正常运行的前提下,指导用户更好地对Spark作业资源使用进行优化,极大化利用资源,降低成本。


2. Sensor

  • Sensor提供了一种可视化的方式监控运行中的Spark进程,每个worker(Executor)及master(Driver)都具有各自的状态监控图,可以通过Logview中找到入口,如下图所示:    

1.png


  • 打开Sensor之后,可以看到下图提供了Driver/Executor在其生命周期内的CPU和内存的使用情况:
  • cpu_plan/mem_plan(蓝线)代表了用户申请的CPU和内存计划量
  • 用户可以直观地从cpu_usage图中看出任务运行中的CPU利用率
  • mem_usage代表了任务运行中的内存使用,是mem_rss和page cache两项之和,详见下文

1.png

  • Memory Metrics
  • mem_rss 代表了进程所占用了常驻内存,这部分内存也就是Spark任务运行所使用的实际内存,通常需要用户关注,如果该内存超过用户申请的内存量,就可能会发生OOM,导致Driver/Executor进程终止。此外,该曲线也可以用于指导用户进行内存优化,如果实际使用量远远小于用户申请量,则可以减少内存申请,极大化利用资源,降低成本。
  • mem_cache(page_cache)用于将磁盘中的数据缓存到内存中,从而减少磁盘I/O操作,通常由系统进行管理,如果物理机内存充足,那么mem_cache可能会使用很多,用户可以不必关心该内存的分配和回收。

1.png


3. 资源参数调优

(1)Executor Cores

  • 相关参数:spark.executor.cores
  • 每个Executor的核数,即每个Executor中的可同时运行的task数目
  • Spark任务的最大并行度是num-executors * executor-cores
  • Spark任务执行的时候,一个CPU core同一时间最多只能执行一个Task。如果CPU core数量比较充足,通常来说,可以比较快速和高效地执行完这些Task。同时也要注意,每个Executor的内存是多个Task共享的,如果单个Executor核数太多,内存过少,那么也很可能发生OOM。

(2)Executor Num

  • 相关参数:spark.executor.instances
  • 该参数用于设置Spark作业总共要用多少个Executor进程来执行
  • 通常用户可以根据任务复杂度来决定到底需要申请多少个Executor
  • 此外,需要注意,如果出现Executor磁盘空间不足,或者部分Executor OOM的问题,可以通过减少单个Executor的cores数,增加Executor的instances数量来保证任务总体并行度不变,同时降低任务失败的风险。

(3)Executor Memory

  • 相关参数:spark.executor.memory
  • 该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且JVM OOM在Executor中更为常见。


  • 相关参数2:spark.executor.memoryOverhead
  • 设置申请Executor的堆外内存,主要用于JVM自身,字符串, NIO Buffer等开销,注意memoryOverhead 这部分内存并不是用来进行计算的,用户代码及spark都无法直接操作。
  • 如果不设置该值,那么默认为spark.executor.memory * 0.10,最小为384 MB
  • Executor 内存不足的表现形式:
  • 在Executor的日志(Logview->某个Worker->StdErr)中出现Cannot allocate memory

1.png

  • 在任务结束的Logview result的第一行中出现:The job has been killed by "OOM Killer", please check your job's memory usage.
  • 在Sensor中发现内存使用率非常高
  • 在Executor的日志中出现java.lang.OutOfMemoryError: Java heap space
  • 在Executor的日志中出现GC overhead limit exceeded
  • Spark UI中发现频繁的GC信息
  • 可能出现OOM的间接表现形式:部分Executor出现No route to host: workerd********* / Could not find CoarseGrainedScheduler等错误
  • 可能原因及解决方案:
  • 限制executor 并行度,将cores 调小:多个同时运行的 Task 会共享一个Executor 的内存,使得单个 Task 可使用的内存减少,调小并行度能缓解内存压力增加单个Executor内存
  • 增加分区数量,减少每个executor负载
  • 考虑数据倾斜问题,因为数据倾斜导致某个 task 内存不足,其它 task 内存足够
  • 如果出现了上文所述的Cannot allocate memory或The job has been killed by "OOM Killer", please check your job's memory usage,这种情况通常是由于系统内存不足,可以适当增加一些堆外内存来缓解内存压力,通常设置spark.executor.memoryOverhead为1g/2g就足够了

(4)Driver Cores

  • 相关参数spark.driver.cores
  • 通常Driver Cores不需要太大,但是如果任务较为复杂(如Stage及Task数量过多)或者Executor数量过多(Driver需要与每个Executor通信并保持心跳),在Sensor中看到Cpu利用率非常高,那么可能需要适当调大Driver Cores
  • 另外要注意,在Yarn-Cluster模式运行Spark任务,不能直接在代码中设置Driver的资源配置(core/memory),因为在JVM启动时就需要该参数,因此需要通过--driver-memory命令行选项或在spark-defaults.conf文件/Dataworks配置项中进行设置。

(5)Driver Memory

  • 相关参数1:spark.driver.memory
  • 设置申请Driver的堆内内存,与executor类似
  • 相关参数2:spark.driver.maxResultSize
  • 代表每个Spark的action(例如collect)的结果总大小的限制,默认为1g。如果总大小超过此限制,作业将被中止,如果该值较高可能会导致Driver发生OOM,因此用户需要根据作业实际情况设置适当值。
  • 相关参数3:spark.driver.memoryOverhead
  • 设置申请Driver的堆外内存,与executor类似


  • Driver的内存通常不需要太大,如果Driver出现内存不足,通常是由于Driver收集了过多的数据,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大。
  • 表现形式:
  • Spark应用程序无响应或者直接停止
  • 在Driver的日志(Logview->Master->StdErr)中发现了Driver OutOfMemory的错误
  • Spark UI中发现频繁的GC信息
  • 在Sensor中发现内存使用率非常高
  • 在Driver的日志中出现Cannot allocate memory
  • 可能原因及解决方案:
  • 代码可能使用了collect操作将过大的数据集收集到Driver节点
  • 在代码创建了过大的数组,或者加载过大的数据集到Driver进程汇总
  • SparkContext,DAGScheduler都是运行在Driver端的。对应rdd的Stage切分也是在Driver端运行,如果用户自己写的程序有过多的步骤,切分出过多的Stage,这部分信息消耗的是Driver的内存,这个时候就需要调大Driver的内存。有时候如果stage过多,Driver端甚至会有栈溢出

(6)本地磁盘空间

  • 相关参数:spark.hadoop.odps.cupid.disk.driver.device_size:
  • 该参数代表为单个Driver或Executor申请的磁盘空间大小,默认值为20g,最大支持100g
  • Shuffle数据以及BlockManager溢出的数据均存储在磁盘上
  • 磁盘空间不足的表现形式:
  • 在Executor/Driver的日志中发现了No space left on device错误
  • 解决方案:
  • 最简单的方法是直接增加更多的磁盘空间,调大spark.hadoop.odps.cupid.disk.driver.device_size
  • 如果增加到100g之后依然出现该错误,可能是由于存在数据倾斜,shuffle或者cache过程中数据集中分布在某些block,也可能是单个Executor的shuffle数据量确实过大,可以尝试:
  • 对数据重分区,解决数据倾斜问题
  • 缩小单个Executor的任务并发spark.executor.cores
  • 缩小读表并发spark.hadoop.odps.input.split.size
  • 增加executor的数量spark.executor.instances
  • 需要注意:
  • 同样由于在JVM启动前就需要挂载磁盘,因此该参数必须配置在spark-defaults.conf文件或者dataworks的配置项中,不能配置在用户代码中
  • 此外需要注意该参数的单位为g,不能省略g
  • 很多时候由于用户配置位置有误或者没有带单位g,导致参数实际并没有生效,任务运行依然失败


4. 总结

上文主要介绍了MaxCompute Spark在使用过程中可能遇到的资源不足的问题及相应的解决思路,为了能够最大化利用资源,首先建议按照1: 4的比例来申请单个worker资源,即1 core: 4 gb memory,如果出现OOM,那么需要查看日志及Sensor对问题进行初步定位,再进行相应的优化和资源调整。不建议单个Executor Cores 设置过多,通常单个Executor在2-8 core是相对安全的,如果超过8,那么建议增加instance数量。适当增加堆外内存(为系统预留一些内存资源)也是一个常用的调优方法,通常在实践中可以解决很多OOM的问题。最后,用户可以参考官方文档https://spark.apache.org/docs/2.4.5/tuning.html,包含更多的内存调优技巧,如gc优化,数据序列化等。


5.MaxCompute Spark 相关文章

MaxCompute Spark 使用和常见问题

Spark On  MaxCompute如何访问Phonix数据

如何使用MaxCompute  Spark读写阿里云Hbase

Spark在MaxCompute的运行方式

Maxcompute Spark作业管控利器—Cupid Console

MaxCompute Spark与Spark SQL对比分析及使用注意事项


更多关于大数据计算、云数仓技术交流,欢迎扫码加入 “MaxCompute开发者社区” 钉钉群


2群.jpg



相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2天前
|
分布式计算 Hadoop Java
优化大数据处理:Java与Hadoop生态系统集成
优化大数据处理:Java与Hadoop生态系统集成
|
2天前
|
分布式计算 DataWorks 调度
DataWorks产品使用合集之ODPS Spark找不到自己的stdout,该如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
12 2
|
2天前
|
分布式计算 资源调度 Hadoop
Java大数据处理:Spark与Hadoop整合
Java大数据处理:Spark与Hadoop整合
|
9天前
|
机器学习/深度学习 分布式计算 大数据
MaxCompute产品使用问题之如何优化大数据量的查询和处理
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
9天前
|
分布式计算 DataWorks MaxCompute
MaxCompute操作报错合集之在Spark访问OSS时出现证书错误的问题,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
9天前
|
SQL 分布式计算 大数据
MaxCompute操作报错合集之使用spark.sql执行rename分区操作,遇到任务报错退出的情况,该怎么办
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
4天前
|
机器学习/深度学习 分布式计算 监控
在大数据模型训练中,关键步骤包括数据收集与清洗、特征工程、数据划分;准备分布式计算资源
【6月更文挑战第28天】在大数据模型训练中,关键步骤包括数据收集与清洗、特征工程、数据划分;准备分布式计算资源,选择并配置模型如深度学习架构;通过初始化、训练、验证进行模型优化;监控性能并管理资源;最后保存模型并部署为服务。过程中要兼顾数据隐私、安全及法规遵守,利用先进技术提升效率。
12 0
|
7天前
|
存储 数据采集 分布式计算
利用大数据技术优化电商返利系统的效率
利用大数据技术优化电商返利系统的效率
|
8天前
|
存储 大数据 物联网
合作加速创新:TDengine 助力精诚瑞宝优化大数据处理
精诚瑞宝,台湾信息服务巨头,与高性能时序数据库TDengine合作,应对数据洪流挑战。TDengine以其卓越的读写速度、压缩及聚合查询能力,助力企业如狮桥集团降低存储成本、简化集群,实现降本增效。双方将持续深化合作,驱动企业数字化转型。涛思数据,TDengine的研发者,专注于时序大数据处理,提供高效解决方案。
11 0
|
8天前
|
存储 数据采集 分布式计算
利用大数据技术优化电商返利系统的效率
利用大数据技术优化电商返利系统的效率

相关产品

  • 云原生大数据计算服务 MaxCompute