Spark在MaxCompute的运行方式

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Spark on MaxCompute的客户端配置以及idea开发环境的配置

一、Spark系统概述

image

左侧是原生Spark的架构图,右边Spark on MaxCompute运行在阿里云自研的Cupid的平台之上,该平台可以原生支持开源社区Yarn所支持的计算框架,如Spark等。

二、Spark运行在客户端的配置和使用

2.1打开链接下载客户端到本地

http://odps-repo.oss-cn-hangzhou.aliyuncs.com/spark/2.3.0-odps0.30.0/spark-2.3.0-odps0.30.0.tar.gz?spm=a2c4g.11186623.2.12.666a4b69yO8Qur&file=spark-2.3.0-odps0.30.0.tar.gz

2.2将文件上传的ECS上

image

2.3将文件解压

tar -zxvf spark-2.3.0-odps0.30.0.tar.gz

2.4配置Spark-default.conf

# spark-defaults.conf
# 一般来说默认的template只需要再填上MaxCompute相关的账号信息就可以使用Spark
spark.hadoop.odps.project.name =
spark.hadoop.odps.access.id =
spark.hadoop.odps.access.key =

# 其他的配置保持自带值一般就可以了
spark.hadoop.odps.end.point = http://service.cn.maxcompute.aliyun.com/api
spark.hadoop.odps.runtime.end.point = http://service.cn.maxcompute.aliyun-inc.com/api
spark.sql.catalogImplementation=odps
spark.hadoop.odps.task.major.version = cupid_v2
spark.hadoop.odps.cupid.container.image.enable = true
spark.hadoop.odps.cupid.container.vm.engine.type = hyper

2.5在github上下载对应代码

https://github.com/aliyun/MaxCompute-Spark

2.5将代码上传到ECS上进行解压

unzip MaxCompute-Spark-master.zip

2.6将代码打包成jar包(确保安装Maven)

cd MaxCompute-Spark-master/spark-2.x
mvn clean package

2.7查看jar包,并进行运行

bin/spark-submit --master yarn-cluster --class com.aliyun.odps.spark.examples.SparkPi \
MaxCompute-Spark-master/spark-2.x/target/spark-examples_2.11-1.0.0-SNAPSHOT-shaded.jar

三、Spark运行在DataWorks的配置和使用

3.1进入DataWorks控制台界面,点击业务流程

image

3.2打开业务流程,创建ODPS Spark节点

image

3.3上传jar包资源,点击对应的jar包上传,并提交

image

image

image

3.4配置对应ODPS Spark的节点配置点击保存并提交,点击运行查看运行状态

image

四、Spark在本地idea测试环境的使用

4.1下载客户端与模板代码并解压

客户端:
http://odps-repo.oss-cn-hangzhou.aliyuncs.com/spark/2.3.0-odps0.30.0/spark-2.3.0-odps0.30.0.tar.gz?spm=a2c4g.11186623.2.12.666a4b69yO8Qur&file=spark-2.3.0-odps0.30.0.tar.gz

image

模板代码:

https://github.com/aliyun/MaxCompute-Spark

4.2打开idea,点击Open选择模板代码

image

image

4.2安装Scala插件

image

image

4.3配置maven

image

4.4配置JDK和相关依赖

image

image

image

欢迎加入“MaxCompute开发者社区2群”,点击链接申请加入或扫描二维码
https://h5.dingtalk.com/invite-page/index.html?bizSource=____source____&corpId=dingb682fb31ec15e09f35c2f4657eb6378f&inviterUid=E3F28CD2308408A8&encodeDeptId=0054DC2B53AFE745
image

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
194 0
|
6月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
286 79
|
10月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
679 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
10月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
466 6
|
10月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
443 2
|
10月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
393 1
|
10月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
10月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
273 1
|
11月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
284 1
|
11月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
235 0

相关产品

  • 云原生大数据计算服务 MaxCompute