通过开源Flink读写云原生数据仓库AnalyticDB PostgreSQL

简介: 本文介绍如何通过开源Flink版实时读写云原生数据仓库AnalyticDB PostgreSQL(以下简称ADB PG版,原分析型数据库PostgreSQL版)数据,包括版本限制、网络要求、操作步骤、类型映射和参数支持等。

ADB PG版基于Flink 自定义conenctor支持读取(维表)和写入(结果表)。通过Flink SQL即可实现对ADB PG版的访问。

前提条件

版本要求

Flink 1.11及以上版本

ADBPG 6.0版本;

网络要求

ADBPG实例与Flink实例在同一VPC下;

ADBPG设置白名单,开放对Flink实例的网络访问。


操作步骤

设置ADBPG实例

1、购买6.0版本ADBPG实例,创建账号,并设置白名单:

2、连接数据库,创建待写入目标表、和待查询源数据表:

create table test6(a int,b text,c text,d int,e int, f int, g bigint, h float, i double precision, j boolean);

insert into test6 values(0 ,'b0', 'c0', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(0 ,'b0', 'c0', 40,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(1 ,'b1', 'c1', 41,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(1 ,'b1', 'c1', 41,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(2 ,'b2', 'c2', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(2 ,'b2', 'c2', 40,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(3 ,'b3', 'c3', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(3 ,'b3', 'c3', 40,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(4 ,'b4', 'c4', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(4 ,'b4', 'c4', 40,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(5 ,'b5', 'c5', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(5 ,'b5', 'c5', 40,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(6 ,'b6', 'c6', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(6 ,'b6', 'c6', 40,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(7 ,'b7', 'c7', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(7 ,'b7', 'c7', 40,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(8 ,'b8', 'c8', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(8 ,'b8', 'c8', 40,  50,    60,    70,       80.2,    90.2,     'false');

insert into test6 values(9 ,'b9', 'c9', 40,  50,    60,    70,       80.1,    90.1,     'true');

insert into test6 values(9 ,'b9', 'c9', 40,  50,    60,    70,       80.2,    90.2,     'false');

create table test7(a int,b text,c text,d int,e int, f int, g bigint, h float, i double precision, j boolean, k int,l text,m text,n int,o int, p int, q bigint, r float, s double precision, t boolean);


Flink作业开发

1、创建Flink vvp版实例,要保证Flink实例与ADBPG实例处于同一个VPC下;

2、创建SQL作业

3、作业开发

代码参考:

CREATE TEMPORARY TABLE datagen_source2(

 a INT,

 b VARCHAR,

 c CHAR(15),

 d TINYINT,

 e SMALLINT,

 f INT,

 g BIGINT,

 h FLOAT,

 i DOUBLE,

 j BOOLEAN,

 `proctime` AS PROCTIME()

) with (

 'connector' = 'datagen'

);


CREATE TEMPORARY TABLE adbpg_dim2 (

 a INT,

 b VARCHAR,

 c CHAR(15),

 d TINYINT,

 e SMALLINT,

 f INT,

 g BIGINT,

 h FLOAT,

 i DOUBLE,

 j BOOLEAN

) with (

  'connector' = 'adbpg',

  'password' = 'password',

  'tablename' = 'tablename',

  'username' = 'username',

  'url' = 'jdbc:postgresql://url:port/databasename',

  'maxretrytimes' = '2',

  'connectionmaxactive' = '5',

  'targetschema' = 'public',

  'casesensitive' = '0',

  'retrywaittime' = '200',

  'cache' = 'lru',

  'cacheSize'= '1000000',

  'cacheTTLMs' = '2000000000');


CREATE TEMPORARY TABLE adbpg_sink2(

 a INT,

 b VARCHAR,

 c CHAR(15),

 d TINYINT,

 e SMALLINT,

 f INT,

 g BIGINT,

 h FLOAT,

 i DOUBLE,

 j BOOLEAN,

 k INT,

 l VARCHAR,

 m CHAR(15),

 n TINYINT,

 o SMALLINT,

 p INT,

 q BIGINT,

 r FLOAT,

 s DOUBLE,

 t BOOLEAN

) with (

  'connector' = 'adbpg',

  'password' = 'password',

  'tablename' = 'tablename',

  'username' = 'username',

  'url' = 'jdbc:postgresql://url:port/databasename',

  'maxretrytimes' = '2',

  'batchsize' = '100',

  'connectionmaxactive' = '5',

  'conflictmode' = 'ignore',

  'usecopy' = '0',

  'targetschema' = 'public',

  'exceptionmode' = 'ignore',

  'casesensitive' = '0',

  'writemode' = '0',

  'retrywaittime' = '200'

);


insert into adbpg_sink2 select T.a, T.b, T.c, T.d, T.e, T.f, T.g, T.h, T.i, T.j, H.a, H.b, H.c, H.d, H.e, H.f, H.g, H.h, H.i, H.j FROM datagen_source2 AS T JOIN adbpg_dim2 FOR SYSTEM_TIME AS OF T.proctime AS H ON MOD(T.a, 10) = H.a;

4、上传jar包:

https://adbpg-public.oss-cn-beijing.aliyuncs.com/flink-connector-adbpg-1.11.1-jar-with-dependencies.jar


5、运行上线:

点击验证、运行、上线,观察日志和数据库判断是否有异常,是否成功写入数据库。

13.png

维表参数说明

参数名

参数含义

备注

url

ADBPG连接地址

必填,需要填写内网连接地址。

tableName

ADBPG源表名

必填,填写维表对应的ADBPG数据仓库中的表名。

userName

ADBPG用户名

必填。

password

ADBPG密码

必填。

joinMaxRows

左表一条记录连接右表的最大记录数

非必填,表示在一对多连接时,左表一条记录连接右表的最大记录数(默认值为1024)。在一对多连接的记录数过多时,可能会极大的影响流任务的性能,因此您需要增大Cache的内存(cacheSize限制的是左表key的个数)。

maxRetryTimes

单次SQL失败后重试次数

非必填,实际执行时,可能会因为各种因素造成执行失败,比如网络或者IO不稳定,超时等原因,ADBPG维表支持SQL执行失败后自动重试,用maxRetryTimes参数可以设定重试次数。默认值为3。

connectionMaxActive

连接池最大连接数

非必填,ADBPG维表中内置连接池,设置合理的连接池最大连接数可以兼顾效率和安全性,默认值为5。

retryWaitTime

重试休眠时间

非必填,每次SQL失败重试之间的sleep间隔,单位ms,默认值100

targetSchema

查询的ADBPG schema

非必填,默认值public

caseSensitive

是否大小写敏感

非必填,默认值0,即不敏感;填1可以设置为敏感;

cache

缓存策略

目前分析型数据库PostgreSQL版支持以下三种缓存策略:

  • none(默认值):无缓存。
  • lru:缓存维表里的部分数据。源表来一条数据,系统会先查找Cache,如果没有找到,则去物理维表中查询。需要配置相关参数:缓存大小(cacheSize)和缓存更新时间间隔(cacheTTLMs)。

cacheSize

设置LRU缓存的最大行数

非必填,默认为10000行

cacheTTLMs

缓存更新时间间隔。系统会根据您设置的缓存更新时间间隔,重新加载一次维表中的最新数据,保证源表能JOIN到维表的最新数据。

非必填,单位为毫秒。默认不设置此参数,表示不重新加载维表中的新数据。


结果表参数说明

参数

注释说明

是否必选

备注

type

类型

固定值,为adbpg

url

jdbc连接地址

分析型数据库PostgreSQL版数据库的jdbc连接地址 。

格式为:'jdbc:postgresql://<yourNetworkAddress>:<PortId>/<yourDatabaseName>'

其中<yourNetworkAddress>为目标分析型数据库PostgreSQL版数据库的主机地址,<PortId>为连接端口,<yourDatabaseName>为连接的数据库。

示例:url=’jdbc:postgresql://gp-xxxxxx.gpdb.cn-chengdu.rds.aliyuncs.com:5432/postgres‘

tableName

表名

无。

username

账号

无。

password

密码

无。

maxRetryTimes

写入重试次数

默认为3。

useCopy

是否采用copy API写入数据

默认为1,表示采用copy API方式写入;

当取值为0时,代表根据writeMode字段采用其他方式写入数据。

batchSize

一次批量写入的条数

默认值为5000。

exceptionMode

当存在写入过程中出现异常时的处理策略

支持以下两种取值:

1)"ignore": 忽略出现导致写入异常的数据;

2)"strict": 日志记录导致写入异常的数据,然后停止任务;

默认取值为"ignore"

conflictMode

当出现主键冲突或者唯一索引冲突时的处理策略

支持以下三种取值:

1)"ignore": 忽略出现导致主键冲突的数据;

2)"strict": 日志记录导致主键冲突的数据,然后停止任务;

3)"update":当出现主键冲突时更新为新值。

4) "upsert": 以insert on conflict方式处理主键冲突。

默认取值为"ignore"

targetSchema

schema名称

默认值为"public"

writeMode

在useCopy字段基础上,更细分的写入方式

默认值为1,代表采用copy API写入数据;

在useCopy字段为0的场景下,可以设定writeMode字段采用其他写入方式:

writeMode=0 :采用insert方式写入数据;

writeMode=2:采用upsert方式写入数据。

upsert含义见文档

注意采用upsert方式写入时需要设定主键字段,设定主键的方式参考示例语句。

/

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
存储 缓存 Cloud Native
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
|
4月前
|
存储 SQL 机器学习/深度学习
一文辨析:数据仓库、数据湖、湖仓一体
本文深入解析数据仓库、数据湖与湖仓一体的技术原理与适用场景。数据仓库结构严谨、查询高效,适合处理结构化数据;数据湖灵活开放,支持多模态数据,但治理难度高;湖仓一体融合两者优势,实现低成本存储与高效分析,适合大规模数据场景。文章结合企业实际需求,探讨如何选择合适的数据架构,并提供湖仓一体的落地迁移策略,助力企业提升数据价值。
一文辨析:数据仓库、数据湖、湖仓一体
|
4月前
|
存储 机器学习/深度学习 数据采集
数据湖 vs 数据仓库:大厂为何总爱“湖仓并用”?
数据湖与数据仓库各有优劣,湖仓一体架构成为趋势。本文解析二者核心差异、适用场景及治理方案,助你选型落地。
数据湖 vs 数据仓库:大厂为何总爱“湖仓并用”?
|
7月前
|
资源调度 Kubernetes 流计算
Flink在B站的大规模云原生实践
本文基于哔哩哔哩资深开发工程师丁国涛在Flink Forward Asia 2024云原生专场的分享,围绕Flink On K8S的实践展开。内容涵盖五个部分:背景介绍、功能及稳定性优化、性能优化、运维优化和未来展望。文章详细分析了从YARN迁移到K8S的优势与挑战,包括资源池统一、环境一致性改进及隔离性提升,并针对镜像优化、Pod异常处理、启动速度优化等问题提出解决方案。此外,还探讨了多机房容灾、负载均衡及潮汐混部等未来发展方向,为Flink云原生化提供了全面的技术参考。
423 9
Flink在B站的大规模云原生实践
|
8月前
|
资源调度 Kubernetes 调度
网易游戏 Flink 云原生实践
本文分享了网易游戏在Flink实时计算领域的资源管理与架构演进经验,从Yarn到K8s云原生,再到混合云的实践历程。文章详细解析了各阶段的技术挑战与解决方案,包括资源隔离、弹性伸缩、自动扩缩容及服务混部等关键能力的实现。通过混合云架构,网易游戏显著提升了资源利用率,降低了30%机器成本,小作业计算成本下降40%,并为未来性能优化、流批一体及智能运维奠定了基础。
483 9
网易游戏 Flink 云原生实践
|
12月前
|
人工智能 关系型数据库 MySQL
AnalyticDB MySQL版:云原生离在线一体化数据仓库支持实时业务决策
AnalyticDB MySQL版是阿里云推出的云原生离在线一体化数据仓库,支持实时业务决策。产品定位为兼具数据库应用性和大数据处理能力的数仓,适用于大规模数据分析场景。核心技术包括混合负载、异构加速、智能弹性与硬件优化及AI集成,支持流批一体架构和物化视图等功能,帮助用户实现高效、低成本的数据处理与分析。通过存算分离和智能调度,AnalyticDB MySQL可在复杂查询和突发流量下提供卓越性能,并结合AI技术提升数据价值挖掘能力。
353 16
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
379 1
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
389 3
|
Cloud Native 安全 调度
Flink 新一代流计算和容错问题之Flink 通过云原生技术改进容错设计要如何操作
Flink 新一代流计算和容错问题之Flink 通过云原生技术改进容错设计要如何操作
134 2
|
运维 Cloud Native 数据库
Flink 新一代流计算和容错问题之将 Flink 的容错与云原生的弹性扩缩容相结合要怎么操作
Flink 新一代流计算和容错问题之将 Flink 的容错与云原生的弹性扩缩容相结合要怎么操作
139 1

推荐镜像

更多