Elastic Training Operator: Kubernetes 上运行弹性深度学习训练任务

简介: ## 背景 由于云计算在资源成本和弹性扩容方面的天然优势,越来越多客户愿意在云上构建AI系统,而以容器,Kubernetes 为代表的云原生技术,已经成为释放云价值的最短路径, 在云上基于Kubernetes 构建AI平台已经成为趋势。 当面临较复杂的模型训练或者数据量大时,单机的计算能力往往无法满足算力要求。 通过使用 阿里的AiACC 或者社区的 [horovod](https:/

背景

由于云计算在资源成本和弹性扩容方面的天然优势,越来越多客户愿意在云上构建AI系统,而以容器,Kubernetes 为代表的云原生技术,已经成为释放云价值的最短路径, 在云上基于Kubernetes 构建AI平台已经成为趋势。

当面临较复杂的模型训练或者数据量大时,单机的计算能力往往无法满足算力要求。 通过使用 阿里的AiACC 或者社区的 horovod 等分布式训练框架,仅需修改几行代码,就能将一个单机的训练任务扩展为支持分布式的训练任务。 在Kubernetes上常见的是kubeflow 社区的tf-operator 支持Tensorflow PS模式,或者mpi-operator 支持horovod的mpi allreduce模式。

现状

kubernetes和云计算提供敏捷性和伸缩性,我们可以通过cluster-AutoScaler 等组件为训练任务设置弹性策略,利用Kubernetes的弹性能力,按需创建,减少GPU设备空转。
但这种伸缩模式面对训练这种离线任务还是略有不足:

  • 不支持容错,当部分Worker 由于设备原因失败,整个任务需要停止重来。
  • 训练任务一般时间较长,占用算力大,任务缺少弹性能力。 当资源不足时,除非任务终止,无法按需为其他业务腾出资源。
  • 训练任务时间较长,不支持worker 动态配置, 无法安全地使用抢占实例,发挥云上最大性价比

如何给训练任务赋予弹性能力,是提高性价比的关键路径。 近期horovod 等分布式框架逐渐支持了Elastic Training,即弹性训练能力。 也就是允许一个训练任务在执行的过程中动态的扩容或者缩容训练worker, 从不会引起训练任务的中断。需要在代码中做少量修改适配,可参考https://horovod.readthedocs.io/en/stable/elastic_include.html


对Elastic training 的实现原理感兴趣可以看这篇 Elastic Horovod 设计文档 , 本文不详细介绍。

image.png






在mpi-operator中,参与训练的Worker都是作为静态资源设计和维护,支持弹性训练模式后,给任务增加了灵活性,同时也给运维层带来了挑战,例如:

  • 必须通过horovod提供的horovordrun 作为入口,horovod中launcher通过ssh登陆worker,需要打通launcher和worker之间的登陆隧道
  • 负责计算弹性的Elastic Driver 模块通过指定 discover_host 脚本获取最新worker拓扑信息,从而拉起或停止worker 实例。 当worker 变化时,首先要更新discover_host 脚本的返回值。
  • 在抢占或价格计算等场景中,有时需要指定worker缩容,k8s原生的编排元语 deployment, statefulset 无法满足指定缩容的场景。

解决方法

针对以上问题,我们设计并开发了et-operator,提供 TrainingJob CRD 描述训练任务, ScaleOut 和 ScaleIn  CRD 描述扩容和缩容操作, 通过它们的组合,使我们的训练任务更具有弹性。

设计

TrainingJob Controller 主要有以下功能:

  • 维护 TrainingJob 的创建/删除生命周期,以及子资源管理
  • 执行扩缩容操作
  • 容错,当worker 被驱逐,创建新的worker 加入到训练中

资源创建

TrainingJob 子资源创建顺序如下:

  • 创建打通ssh 所需的密钥对, 创建secret
  • 创建workers,包含service和pod,挂载secret公钥
  • 创建configmap, 包含 discover_host 脚本 , hostfile文件 
  • 创建launcher,挂载configmap。 由于hostfile 后续会随着拓扑关系修改,所以hostfile 单独通过initcontainer 从configmap拷贝到单独目录。


TrainingJob 的的配置分为Lanucher 和 Worker。 默认et-operator 会将discover_host脚本挂载到Launcher的 /etc/edl/discover_hosts.sh 文件,在入口脚本的horovodrun 中可以通过 --host-discovery-script 参数指定。 Worker 设置中 ,通过 maxReplicas / minReplicas 指定workers的副本数范围。

apiVersion: kai.alibabacloud.com/v1alpha1
kind: TrainingJob
metadata:
  name: elastic-training
  namespace: default
spec:
  cleanPodPolicy: Running
  etReplicaSpecs:
    launcher:
      replicas: 1
      template:
        spec:
          containers:
          - command:
            - sh
            - -c
            - horovodrun -np 2 --min-np 1 --max-np 9 --host-discovery-script
              /etc/edl/discover_hosts.sh python /examples/elastic/tensorflow2_mnist_elastic.py
            image: registry.cn-huhehaote.aliyuncs.com/lumo/horovod:master-tf2.1.0-torch1.4.0-mxnet-py3.6-gpu
            imagePullPolicy: Always
            name: mnist-elastic
    worker:
      maxReplicas: 9
      minReplicas: 1
      replicas: 2
      template:
        spec:
          containers:
          - image: registry.cn-huhehaote.aliyuncs.com/lumo/horovod:master-tf2.1.0-torch1.4.0-mxnet-py3.6-gpu
            imagePullPolicy: Always
            name: mnist-elastic
            resources:
              limits:
                nvidia.com/gpu: "1"
              requests:
                nvidia.com/gpu: "1"
status:
  currentWorkers:
  - elastic-training-worker-0
  - elastic-training-worker-1
  - elastic-training-worker-2
  - elastic-training-worker-3
  phase: Succeeded
  replicaStatuses:
    Launcher:
      active: 1
      succeeded: 1
    Worker:
      active: 4

image.png

Worker 扩容 / 缩容

除了TrainingJob外,et-operator 同时支持 ScaleOut 和 ScaleIn 两种CRD,下发训练任务扩容和缩容操作。
当下发一个ScaleOut CR, ScaleOutController 触发Reconcile, 这里工作很简单, 根据ScaleOut CR中的Selector 字段,找到Scaler 对应的TrainingJob, 设置到CR 的OwnerReferences 上。

- apiVersion: kai.alibabacloud.com/v1alpha1
  kind: ScaleOut
  metadata:
    creationTimestamp: "2020-11-04T13:54:26Z
    name: scaleout-ptfnk
    namespace: default
    ownerReferences:
    - apiVersion: kai.alibabacloud.com/v1alpha1
      blockOwnerDeletion: true
      controller: true
      kind: TrainingJob
      name: elastic-training // 指向扩容对象TrainingJob
      uid: 075b9c4a-22f9-40ce-83c7-656b329a2b9e
  spec:
  selector:
    name: elastic-training
  toAdd:
    count: 2


TrainingJobController 中监听到属于 TrainingJob  的ScaleOut CR有更新, 触发TrainingJob 的Reconcile, 遍历过滤 TrainingJob 下OwnerReference指向的 ScaleIn 和 ScaleOut, 根据创建时间和状态时间决定执行的扩容或者缩容。

apiVersion: kai.alibabacloud.com/v1alpha1
kind: TrainingJob
metadata:
  name: elastic-training
  namespace: default
spec: 
  // ...... Launcher and Worker spec
status:
  currentScaler: ScaleIn:default/scaleout-ptfnk
  phase: Scaling
  currentWorkers:
  - elastic-training-worker-0
  - elastic-training-worker-1

image.png




运行

安装ET-Operator

mkdir -p $(go env GOPATH)/src/github.com/aliyunContainerService
cd $(go env GOPATH)/src/github.com/aliyunContainerService
git clone https://http://github.com/aliyunContainerService/et-operator
cd et-operator
kubectl create -f deploy/all_in_one.yaml 

检测crd的安装

# kubectl get crd
NAME                                    CREATED AT
scaleins.kai.alibabacloud.com           2020-11-11T11:16:13Z
scaleouts.kai.alibabacloud.com          2020-11-11T11:16:13Z
trainingjobs.kai.alibabacloud.com       2020-11-11T11:16:13Z




检测controller的运行状态,默认安装在kube-ai 中

# kubectl -n kube-ai get po
NAME                                         READY   STATUS              RESTARTS   AGE
et-operator-controller-manager-7877968489-c5kv4   0/2     ContainerCreating   0          5s

运行TrainingJob


运行事先已准备好的示例

kubectl apply -f examples/training_job.yaml


检测运行状态

# kubectl get trainingjob
NAME                          PHASE     AGE
elastic-training              Running   77s

# kubectl get po
NAME                                      READY   STATUS             RESTARTS   AGE
elastic-training-launcher                 1/1     Running            0          7s
elastic-training-worker-0                 1/1     Running            0          10s
elastic-training-worker-1                 1/1     Running            0          9s


缩容训练任务Worker

执行缩容时,可以通过ScaleIn CR中的 spec.toDelete.count  或 spec.toDelete.podNames  字段指定缩容的worker。


通过 count 配置缩容的数量,则通过index 计算由高到低缩容Worker。

apiVersion: kai.alibabacloud.com/v1alpha1
kind: ScaleIn
metadata:
  name: scalein-workers
spec:
  selector:
    name: elastic-training
  toDelete:
    count: 1


如果想要缩容特定的Worker,可以配置 podNames 

apiVersion: kai.alibabacloud.com/v1alpha1
kind: ScaleIn
metadata:
  name: scalein-workers
spec:
  selector:
    name: elastic-training
  toDelete:
    podNames:
    - elastic-training-worker-1


运行一个缩容示例,指定数量缩容1个worker

kubectl create -f examples/scale_in_count.yaml


检测缩容执行状态和训练任务

# kubectl get scalein
NAME                                     PHASE            AGE
scalein-sample-t8jxd                     ScaleSucceeded   11s

# kubectl get po
NAME                                      READY   STATUS             RESTARTS   AGE
elastic-training-launcher                 1/1     Running            0          47s
elastic-training-worker-0                 1/1     Running            0          50s

扩容训练任务


在ScaleOut CR中,通过 spec.toAdd.count  字段指定扩容的worker数

apiVersion: kai.alibabacloud.com/v1alpha1
  kind: ScaleOut
  metadata:
    name: elastic-training-scaleout-9dtmw
    namespace: default
  spec:
    selector:
      name: elastic-training
    timeout: 300
    toAdd:
      count: 2

运行示例

kubectl create -f examples/scale_out.yaml

检测缩容执行状态和训练任务

kubectl get scaleout
NAME                                     PHASE            AGE
elastic-training-scaleout-9dtmw          ScaleSucceeded   30s
kubectl get po
NAME                                      READY   STATUS             RESTARTS   AGE
elastic-training-launcher                 1/1     Running            0          2m5s
elastic-training-worker-0                 1/1     Running            0          2m8s
elastic-training-worker-1                 1/1     Running            0          40s
elastic-training-worker-2                 1/1     Running            0          40s


总结

ET-Operator 提供一组训练和扩缩容CRD和Controller, 让我们在Kubernetes 上方便地运行弹性分布式训练,支持下发分布式训练任务,并通过和分布式框架的集成联动,在训练任务运行过程中动态地扩容和缩容参与运算的Workers。 使我们的训练任务具有弹性能力,结合抢占实例,能够更好的利用云上的资源弹性和性价比优势。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
12月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
757 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
12月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
306 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
10月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
407 73
|
9月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
1990 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
|
11月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
369 8
|
11月前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
1305 3
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
机器学习/深度学习 人工智能 监控
一文读懂deepSpeed:深度学习训练的并行化
DeepSpeed 是由微软开发的开源深度学习优化库,旨在提高大规模模型训练的效率和可扩展性。通过创新的并行化策略、内存优化技术(如 ZeRO)及混合精度训练,DeepSpeed 显著提升了训练速度并降低了资源需求。它支持多种并行方法,包括数据并行、模型并行和流水线并行,同时与 PyTorch 等主流框架无缝集成,提供了易用的 API 和丰富的文档支持。DeepSpeed 不仅大幅减少了内存占用,还通过自动混合精度训练提高了计算效率,降低了能耗。其开源特性促进了 AI 行业的整体进步,使得更多研究者和开发者能够利用先进优化技术,推动了 AI 在各个领域的广泛应用。
|
12月前
|
机器学习/深度学习 算法 TensorFlow
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。
1899 0
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决