视觉AI训练营 DAY2 基于图像识别的垃圾分类系统

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 垃圾分类识别ClassifyingRubbish的语法与应用。

功能描述
ClassifyingRubbish可以对图片中的物品垃圾进行分类,并给出具体的物品名称。

前提条件
前往视觉只能开放平台开通图像识别服务。

图片限制
图片类型:JPEG、JPG、PNG。
图片大小:图片小于等于3M。
图片分辨率:不限制图片分辨率,但图片分辨率太高可能会导致API识别超时,超时时间为5秒。
URL地址中不能包含中文字符。

应用香蕉皮结果.png
干电池结果.png

干电池识别代码示例

    "success": true,
    "data": {
        "data": {
            "RequestId": "62AB40DF-0DE2-43EF-BC6D-E49A4C731BCF",
            "Data": {
                "Sensitive": false,
                "Elements": [
                    {
                        "Rubbish": "干电池",
                        "Category": "干垃圾",
                        "CategoryScore": 1,
                        "RubbishScore": 1
                    }
                ]
            }
        },
        "url": "https://imagerecog.cn-shanghai.aliyuncs.com/",
        "during": 661,
        "headers": {
            "response": {
                "date": "Tue, 03 Nov 2020 12:31:19 GMT",
                "content-type": "application/json;charset=utf-8",
                "content-length": "178",
                "connection": "keep-alive",
                "access-control-allow-origin": "*",
                "access-control-allow-methods": "POST, GET, OPTIONS",
                "access-control-allow-headers": "X-Requested-With, X-Sequence, _aop_secret, _aop_signature",
                "access-control-max-age": "172800",
                "x-acs-request-id": "62AB40DF-0DE2-43EF-BC6D-E49A4C731BCF"
            }
        }
    },
    "requestId": "ec7732ba-b92c-4d2d-bd31-1a259fdcd43c"
}

调试
您可以在OpenAPI Explorer中直接运行该接口,免去您计算签名的困扰。运行成功后,OpenAPI Explorer可以自动生成SDK代码示例。

请求参数
Action类型String,示例值ClassifyingRubbish 要执行的操作取值:ClassifyingRubbish。

ImageURL类型String是必选示例值:https://viapi-test.oss-cn-shanghai.aliyuncs.com/test-team/rubbish.jpg
描述图片URL地址。当前仅支持上海地域的OSS链接,如何生成URL请参见生成URL。

返回数据
名称Data,类型Struct,描述返回的结果数据内容。
名称RequestId,类型String,示例值UUID,描述请求ID。

示例代码
请求示例

&ImageURL=https://viapi-test.oss-cn-shanghai.aliyuncs.com/test-team/rubbish.jpg
&<公共请求参数>

正常返回数据

<Data>
    <Sensitive>false</Sensitive>
    <Elements>
        <Category>可回收垃圾</Category>
        <CategoryScore>0.68</CategoryScore>
        <Rubbish>干电池</Rubbish>
        <RubbishScore>0.68</RubbishScore>
    </Elements>
</Data>

总结:基于个人水平不足,只能参考学习。经过这5天的学习对视觉只能AI识别有了系统的认识,也懂得了识别的原理与程序代码分析。收获良多。

相关文章
|
2天前
|
机器学习/深度学习 监控 算法
机器学习在图像识别中的应用:解锁视觉世界的钥匙
机器学习在图像识别中的应用:解锁视觉世界的钥匙
135 95
|
5天前
|
存储 人工智能 安全
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
从AI换脸到篡改图像,合合信息如何提升视觉内容安全?
|
13天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在电子商务中的个性化推荐系统:驱动用户体验升级
AI在电子商务中的个性化推荐系统:驱动用户体验升级
38 17
|
2天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
27 13
|
6天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
39 14
|
2天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
2天前
|
机器学习/深度学习 人工智能 安全
合合信息亮相CSIG AI可信论坛,全面拆解视觉内容安全的“终极防线”!
合合信息在CSIG AI可信论坛上,全面拆解了视觉内容安全的“终极防线”。面对AI伪造泛滥的问题,如Deepfake换脸、PS篡改等,合合信息展示了其前沿技术,包括通用PS检测系统和AIGC与换脸检测系统,有效应对视觉内容安全挑战。公司在国际赛事中屡获殊荣,并联合多方发布《文本图像篡改检测系统技术要求》,推动行业标准化发展。通过技术创新,合合信息为金融、政企等领域提供可靠保障,守护社会信任,引领视觉内容安全新方向。
19 0
|
6天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 框架之争
本文介绍了AI框架在数学上对自动微分的表达和处理,以及其在多线程算子加速、GPU/NPU支持、代码编译优化等方面的技术挑战。文章详细梳理了AI框架的发展历程,从萌芽阶段到深化阶段,探讨了不同阶段的关键技术和代表性框架。同时,文章展望了AI框架的未来趋势,包括全场景支持、易用性提升、大规模分布式支持和科学计算融合。
27 0
|
6天前
|
缓存 人工智能 负载均衡
AI革新迭代:如何利用代理IP提升智能系统性能
在人工智能快速发展的背景下,智能系统的性能优化至关重要。本文详细介绍了如何利用代理IP提升智能系统性能,涵盖数据加速与缓存、负载均衡、突破地域限制、数据传输优化和网络安全防护等方面。结合具体案例和代码,展示了代理IP在实际应用中的价值和优势。
17 0