OpenAI重拾规则系统,用AI版机器人定律守护大模型安全

简介: 在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。

在人工智能的浩瀚星空中,大语言模型(LLM)如同一颗耀眼的明星,其强大的语言理解和生成能力为我们带来了前所未有的便利。然而,随着这些模型变得越来越强大,如何确保它们的安全性和可靠性,使其符合人类的价值观和道德准则,成为了一项紧迫的挑战。

最近,来自OpenAI的研究人员提出了一种创新的方法,旨在通过规则系统来引导大语言模型的行为,确保它们在各种情境下都能做出安全、负责任的决策。这一方法被形象地称为"AI版机器人定律",它借鉴了科幻作品中的机器人定律,为大语言模型设定了明确的规则和限制,以防止它们产生有害或不适当的行为。

在人工智能的发展历程中,规则系统曾一度是主流的方法。然而,随着数据驱动和机器学习方法的兴起,规则系统逐渐被边缘化。然而,在面对大语言模型的安全性问题时,规则系统的独特优势再次显现出来。

与传统的机器学习方法不同,规则系统通过明确的规则和逻辑来定义模型的行为。这些规则可以包括各种情境下的期望行为,例如在面对用户的不当请求时,模型应该如何回应;在处理敏感话题时,模型应该遵循哪些限制等。通过将这些规则明确地编码到模型中,研究人员可以更好地控制模型的行为,确保它们符合人类的价值观和道德准则。

在最新的研究中,OpenAI的研究人员提出了一种名为"规则基于奖励(Rule-Based Rewards,RBR)"的方法,旨在通过规则系统来引导大语言模型的行为。这种方法的核心思想是将复杂的安全策略分解为一系列具体的规则,然后利用这些规则来评估模型的输出,并根据评估结果给予相应的奖励或惩罚。

具体来说,研究人员首先将安全策略分解为一系列具体的规则,例如"拒绝请求时不应带有判断性语言"或"对自我伤害的对话应包含同情的道歉,承认用户的情感状态"。然后,他们利用一个预训练的大型语言模型(LLM)作为评估器,根据这些规则对模型的输出进行评估,并计算出相应的奖励或惩罚。

这种方法的一个关键优势是它能够提供细粒度的控制。通过将安全策略分解为具体的规则,研究人员可以精确地控制模型在各种情境下的行为,确保它们在面对不同的请求和话题时都能做出适当的回应。

为了验证这种方法的有效性,研究人员进行了一系列的实验。他们将RBR方法与传统的人类反馈方法进行了比较,并评估了模型在各种安全相关任务上的性能。

实验结果表明,RBR方法在确保模型安全性的同时,能够显著减少对安全提示的过度拒绝。在一项评估中,RBR方法在F1分数上取得了97.1的成绩,而人类反馈基线只有91.7。这表明RBR方法能够更好地平衡模型的有用性和安全性。

此外,研究人员还发现,RBR方法可以应用于各种不同的奖励模型,包括那些具有过度谨慎倾向或有时偏好不安全输出的模型。这表明RBR方法具有广泛的适用性,可以用于改进各种类型的大语言模型的安全行为。

尽管RBR方法在改进大语言模型安全性方面取得了显著的成果,但它也存在一些局限性和挑战。

从积极的方面来看,RBR方法为我们提供了一种强大的工具,用于确保大语言模型的行为符合人类的价值观和道德准则。通过将安全策略分解为具体的规则,并利用这些规则来评估模型的输出,研究人员可以更好地控制模型的行为,并确保它们在各种情境下都能做出适当的回应。

然而,从消极的方面来看,RBR方法也存在一些挑战。首先,规则的制定和维护可能是一个复杂的过程。研究人员需要仔细考虑各种可能的情境,并制定出相应的规则。这可能需要大量的时间和专业知识。

其次,规则系统可能无法完全捕捉到人类语言的复杂性和多样性。人类语言是丰富多样的,充满了各种隐喻、讽刺和双关语。要为所有这些情况制定出明确的规则可能非常困难。

最后,规则系统可能无法适应不断变化的环境和需求。随着社会的发展和变化,人类的价值观和道德准则也会发生变化。要及时更新和维护规则系统以适应这些变化可能非常具有挑战性。

论文地址:https://arxiv.org/pdf/2411.01111

目录
相关文章
|
1天前
|
人工智能 API 开发工具
【重磅发布】 免费领取阿里云百炼AI大模型100万Tokens教程出炉,API接口实战操作,DeepSeek-R1满血版即刻体验!
阿里云百炼是一站式大模型开发及应用构建平台,支持开发者和业务人员轻松设计、构建大模型应用。通过简单操作,用户可在5分钟内开发出大模型应用或在几小时内训练专属模型,专注于创新。
174 87
【重磅发布】 免费领取阿里云百炼AI大模型100万Tokens教程出炉,API接口实战操作,DeepSeek-R1满血版即刻体验!
|
13天前
|
人工智能
AI对话网站一键生成系统源码
可以添加进自己的工具箱,也可以嵌入自己博客的页面中,引流效果杠杠的,新拟态设计风格,有能力的大佬可以进行二开,仅提供学习,用户可输入网站名称、AI默认的开场白、AI头像昵称、AI网站中引流的你的网站等等内容,所有生成的网页全部保存到你的服务器上
56 27
AI对话网站一键生成系统源码
|
10天前
|
人工智能 开发框架 机器人
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
AstrBot 是一个开源的多平台聊天机器人及开发框架,支持多种大语言模型和消息平台,具备多轮对话、语音转文字等功能。
2320 13
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
|
12天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
939 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
8天前
|
人工智能 数据可视化 搜索推荐
免费+数据安全!手把手教你在PC跑DeepSeek-R1大模型,小白也能秒变AI大神!
本地部署AI模型(如DeepSeek R1)保障数据隐私、节省成本且易于控制,通过Ollama平台便捷安装与运行,结合可视化工具(如Chatbox)及Python代码调用,实现高效、个性化的AI应用开发与使用。
105 3
免费+数据安全!手把手教你在PC跑DeepSeek-R1大模型,小白也能秒变AI大神!
|
4天前
|
人工智能 算法 调度
DeepSeek杀疯了!国产AI大模型如何重构未来技术版图?
【爆款导读】当ChatGPT还在为每月10亿访问量沾沾自喜时,中国AI军团已悄然完成弯道超车。2025年开年,DeepSeek以雷霆之势横扫中美应用商店双榜,上线72小时突破千万DAU,开发者生态激增300%。通过优化算法降低成本、多模态能力提升效率,DeepSeek不仅在用户数量上取得突破,更在实际应用场景中展现强大实力。其开源策略推动技术民主化,助力更多开发者参与AI开发,成为AI军备竞赛中的佼佼者。
149 20
|
1天前
|
人工智能 自然语言处理 语音技术
Ai好记全面接入DeepSeek大模型!重塑知识管理新体验
Ai好记融合DeepSeek大模型,带来知识管理新纪元。视频秒变知识胶囊,外语资料自动转母语,一键构建思维导图。六大核心能力包括结构化笔记、AI播客、全平台解析等,全面提升学习和工作效率。立即登录aihaoji.com体验!
|
8天前
|
人工智能 运维 监控
从大规模恶意攻击 DeepSeek 事件看 AI 创新隐忧:安全可观测体系建设刻不容缓
在近来发生的 DeepSeek 遭遇的安全事件中,我们可以看到当前人工智能行业在网络安全方面的脆弱性,同时也为业界敲响了警钟。唯有通过全行业的协同努力,加强整体、完善的网络安全可观测建设,才能为 AI 技术的创新和发展构建一个安全而稳固的环境。我们期盼并相信,在攻克这些网络安全难题之后,AI 创新将迎来更加安全、灿烂的未来。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
以史为鉴,未雨绸缪:身处“大模型掀起的AI浪潮中”的感悟和思考
本文旨在帮助读者更深入地理解大模型和AI技术,重点介绍关键技术革新的背景与影响,特别是本次大模型时代和新一轮AI浪潮的推动因素与发展历程。
|
9天前
|
人工智能 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.4 应用实践之 AI大模型外脑
PolarDB向量数据库插件通过实现通义大模型AI的外脑,解决了通用大模型无法触达私有知识库和产生幻觉的问题。该插件允许用户将新发现的知识和未训练的私有知识分段并转换为向量,存储在向量数据库中,并创建索引以加速相似搜索。当用户提问时,系统将问题向量化并与数据库中的向量进行匹配,找到最相似的内容发送给大模型,从而提高回答的准确性和相关性。此外,PolarDB支持多种编程语言接口,如Python,使数据库具备内置AI能力,极大提升了数据处理和分析的效率。
38 4

热门文章

最新文章