从AI换脸到篡改图像,合合信息如何提升视觉内容安全?

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 从AI换脸到篡改图像,合合信息如何提升视觉内容安全?

引言

如果说AI是这个时代掀起的技术浪潮,那么视觉内容安全无疑是隐藏在浪潮之下的暗礁。随着AIGC等相关技术蓬勃发展,伪造人脸、篡改文档、图像造假等技术正悄然发展,真假难辨的内容如同一张无形之网,正在挑战社会与人们的信任体系。从金融交易到身份认证,从法律凭证到公共安全,我们应该怎么守护这份“真实性”?

在刚刚结束的CSIG青年科学家会议AI可信论坛上,这一问题成为聚焦点。技术的高速发展不容忽视,但“可信”二字才是AI真正走向应用的试金石。而这场关于“真实与伪装”的对决中,合合信息以技术为剑,亮出了他们的破局之道——视觉内容安全技术

作为文本图像处理领域的先行者,合合信息以精准的图像篡改检测、人脸伪造鉴别等核心技术,发布了篡改检测平台,给出了行业痛点的答案。这不仅是技术实力的展示,更是未来图像安全生态的展望:当伪造手段层出不穷时,我们是否能构筑一道不可逾越的防线?

从视觉内容安全的时代危机,到技术创新的破局之道,再到大模型赋能的未来重塑,接下来我将对合合信息在CSIG青年科学家会议的AI可信论坛中所做的分享《视觉内容安全技术的前沿进展与应用》进行解读。

一、AI“真假之战”下的发展现状与考验挑战

1.1 视觉内容安全现状与技术分类

AI技术的普及,让伪造与篡改视觉内容变得更加容易。借助图像生成、深度伪造等技术,不法分子能够轻松制造出高度逼真的虚假图像和视频,进一步模糊了信息真伪的界限。与此同时,一些黑灰产也使问题愈加严峻。伪造内容已成为网络诈骗、虚假传播、恶意舆论等违法活动的“工具”,金融交易凭证被篡改、身份信息被伪造等事件频频发生,不仅侵害个人隐私,还扰乱社会秩序,造成巨大的经济与安全风险。面对日益复杂的视觉内容安全威胁,企业等刚性需求持续攀升。企业在金融、保险、政务等核心领域,迫切需要有效的技术手段识别并防范虚假内容,保障业务安全与用户信任。因此,视觉内容安全不再是单纯技术问题,而是AI时代 “可信”的核心议题。

视觉内容安全技术主要包括主动辨别被动辨别两大类,各自针对不同的场景与需求提供保护。主动辨别是一种预防性手段,主要通过数字水印等技术在视觉内容中嵌入可见或不可见的标记,为内容增加身份验证与版权保护功能。当内容被传播或使用时,这些水印能够迅速识别来源,验证内容的真伪,确保内容未被篡改,有效防止虚假信息的扩散与盗版问题的发生。

与主动辨别不同,被动辨别技术侧重于对已存在的视觉内容进行分析和检测,主要包括文件标记、特征分类和检测分割等手段,相对主动辨别来说更加有技术难度。文件标记通过嵌入标识符,帮助快速定位内容来源;特征分类根据视觉内容的特征进行归档管理,便于后续分析;检测分割则通过精细化检测识别内容中的伪造与篡改痕迹。这些技术共同构成了被动辨别体系,为视觉内容的真实性验证与版权保护提供有力支持,适用于事后追踪与复杂场景的内容分析。

1.2视觉内容安全企业

在视觉内容安全领域,国内外企业纷纷推出各具特色的产品与解决方案,虽然在技术特点、应用场景等方面存在差异,但目标一致,都是为提升视觉内容的安全性而努力。国外企业,如英特尔、微软等,主要关注人脸伪造鉴别领域;国内企业则更注重技术的实际落地,针对具体场景与行业需求提供高效解决方案。

合合信息凭借深厚的技术积累与丰富的行业经验,取得了显著成就。通过持续的技术创新与优化,合合信息在图像篡改检测、人脸伪造鉴别等核心领域不断突破,率先发布了篡改检测平台,为金融、政务等关键场景提供了有力的安全保障,成为推动视觉内容安全发展的重要力量。

18e8555b0f92d573107530d85a6a7bf6_464d1ba51a114efabe421d5aa44f9be5.png

1.3视觉内容安全领域挑战

视觉内容安全技术正面临多重挑战,限制了其在复杂环境中的广泛应用与高效表现。首先是跨域泛化能力不足,现有技术往往依赖特定的数据集和场景,在这些环境中表现优异,但在面对未见过的伪造手段或多样化的应用场景时,检测性能会显著下降,难以保持高精度与稳定性。

其次,纯色背景图篡改的检测难度较高,如截图、PDF等类型的视觉内容,篡改后的结果常常没有明显的视觉异常,传统检测技术难以捕捉其中的细微变化,增加了检测难度和准确性的挑战。

同时,质量退化问题进一步加剧了检测系统的压力。图像在传输、压缩、存档等过程中容易出现模糊、JPEG伪影或下采样等现象,这些质量损失往往掩盖篡改痕迹,降低系统的检测效果。

最后,高检出率与低误检率的矛盾依然存在。客户期望检测系统在准确识别伪造内容的同时,将误判率降到最低,但这两者在技术实现上往往难以兼顾,如何在提升检出率的同时有效控制误检率,成为当前技术发展的关键难点。

二、开山之石:引领视觉内容安全的创新之路

2.1合合内容安全系统

面对视觉内容安全领域日益严峻的挑战,如AI技术带来的伪造篡改泛滥、跨域泛化能力不足等技术难题,合合信息内容安全系统凭借其先进技术与全面功能脱颖而出,成为领域的先行者。针对当前技术瓶颈与复杂应用场景,率先发布了视觉内容安全系统,系统依托通用篡改检测技术与人脸鉴伪检测技术两大核心能力,为企业与机构提供精准、高效的内容真实性与安全性保障。

通用篡改检测:基于先进的图像处理与AI技术,合合信息内容安全系统实现了对证照、票据、截图、印章等多类型图像的篡改检测。该技术采用通用类PS检测模型,具备低误检、高检出的特点,能精准定位篡改区域,并通过抗压缩能力确保在传输和存储场景中的稳定性能。广泛应用于证券、保险、银行、零售等行业,帮助企业快速识别被篡改的文件,防范欺诈与虚假交易风险。在实际测试中,系统在多个数据集上表现优异,进一步验证了其检测效果的可靠性。

image.png

人脸鉴伪检测:采用AI算法,可精准检测AIGC生成的人脸及伪造人脸图像,具备高准确率、低误检率与强大的泛化能力,有效应对未知类型的伪造攻击。在落地应用中,该技术已部署于某央企标杆银行的业务流程中,快速验证客户身份的真实性,有效防范身份冒用与欺诈风险。

8ecfa05c32ff9c0ee4374942fcf80d6f_770c2986eb1647bdb1a9bb18fbef6a55.png

2.2发起编制相关技术规范

为推动视觉内容安全技术的规范化与标准化发展,行业内需要制定一系列技术规范,明确技术要求、测试方法及性能指标,确保检测系统的质量与可靠性。合合信息联合中国信通院、中国图象图形学学会等机构联合发起和编制了《文本图像篡改检测系统技术要求》,为行业提供了权威指引。这些标准涵盖了伪造图像鉴别、生成式图像判别等关键议题,形成了行业共识,推动了技术在实际应用场景中的落地。

db67143e66b3885c0a0c1192ce428549_b6d1e6e42d4840f09492530932fe62d6.png

2.3参与篡改检测挑战赛

文本图像篡改检测领域近年来举办了多场国际化技术挑战赛。这些比赛吸引了来自全球科研院校与科技公司的参赛队伍,作品在篡改区域定位、误判防控等方面表现出色,适配多种真实场景。合合信息参加了多个比赛,并且均获得了不错的优秀成绩。例如在2023年文档分析与识别国际会议(ICDAR)挑战赛中,合合信息技术团队提出的AI图像篡改检测方案,在保持极低误检率的同时,精准识别并定位文本篡改区域,有效保障了文档内容的真实性。该方案凭借技术优势与创新性,最终在比赛中获得了第一名的优秀成绩。在2024年的全球AI攻防挑战:AI核身之金融场景凭证篡改检测比赛中,也获得了冠军。

fceb8e20a57874edf90845653bd0eb56_55d6ff883cc44f72862d4712ec0d3425.png

三、视觉内容安全技术趋势展望

3.1内容安全系统主要需求方向

随着技术的不断进步,视觉内容安全的发展也日益复杂且多样化。未来,内容安全系统的需求将主要集中在以下几个关键领域:

人脸伪造:随着AI换脸和照片活化等技术的迅速发展,人脸伪造手段变得越来越难以察觉。这类伪造不仅在娱乐和恶作剧中被使用,更可能被不法分子用于身份认证、远程银行开户、资金划拨、贷款申请等重要场景,带来严重的社会安全隐患。因此,人脸伪造图像的检测成为了内容安全系统的核心需求之一。

图像篡改:图像篡改技术通过PS、AI生图等手段,广泛应用于身份证照、合同、资质证明和财务票据等多个领域。这些篡改行为不仅可能引发法律纠纷和信任危机,更可能对国家安全与社会稳定构成威胁。因此,图像篡改的检测技术已成为内容安全系统中不可或缺的一部分。

声纹伪造:随着语音合成和语音转换技术的成熟,声纹伪造也逐渐成为安全领域的重大威胁。这种技术不仅能模仿他人声音,还可能被用于电话银行欺诈、资金转账伪造、身份骗贷等犯罪行为,给金融安全和个人隐私带来极大风险。因此,声纹伪造的检测也日益成为内容安全系统的迫切需求。

a2753c08daca52168803370cab5c48e7_35a3079f9754400cab69fb2b8784f71b.png

3.2图像内容安全的挑战

图像内容安全面临的主要挑战有以下几个点:

易受攻击性:图像内容安全系统容易受到多种攻击形式的影响,例如缩放攻击,这种攻击可能破坏图像中的关键特征,导致检测性能下降。此外,在传输过程中,图像因压缩、格式转换等操作可能遭遇质量损失,进一步影响篡改检测的准确性。

泛化能力不足:尽管在特定场景和数据集上表现优异,但当面对未知或多样化的伪造手段时,现有系统的检测性能通常难以保持高水平,尤其在open-set环境中,系统可能难以识别训练集之外的样本,导致泛化能力成为重要挑战。

伪造手段变化快,维护成本高:随着伪造技术的不断创新,内容安全系统需要不断升级和优化以应对新挑战。每一次升级都伴随高昂的维护成本,包括时间、资源和人力的投入,增加了长期运维的难度。

数据获取与标注成本高:高质量的标注数据对于训练有效的检测系统至关重要。然而,数据获取与标注往往需要大量的人力和资源,且由于涉及个人隐私和版权等问题,这一过程往往更加复杂和困难。

3.3基于大模型的创新探索

随着大模型技术的成熟,其在视觉内容安全方面的应用潜力愈加明显。相比传统的中小模型,大模型凭借其高准确率、强泛化能力和多模态信息处理能力,为视觉内容安全提供了更为先进的解决方案。传统技术容易受到攻击,且泛化能力有限,而大模型能够通过学习更丰富的特征和模式,提高检测的准确性和稳定性。同时,它还具备处理图像、文本、语音等多种模态信息的能力,实现对视觉内容的全面理解与分析。

基于大模型的视觉内容安全技术不仅能够提升检测效果,还在知识注入与迭代更新上展现出独特优势。传统技术需要人工更新和调整模型以应对新型伪造手段,而大模型可以通过交互式更新,将新的知识快速注入模型,提升系统适应性,减少维护成本。当前,ForgeryGPT等模型已尝试将大模型应用于伪造图像检测,通过结合小模型的检测结果与大模型的自然语言解释能力,精准定位篡改区域并提供解释,从而增强系统的准确性、可解释性和可信度。

四、总结

随着视觉内容安全在各行业中日益受到重视,尤其是在图像、视频等含文字的视觉内容领域,仍面临诸多亟待解决的问题。因此,提升视觉内容安全的技术防护显得尤为重要,且必须进行整体规划,综合考虑各业务环节的需求与协同,从而实现更加高效和经济的解决方案。为了推动内容安全系统的更好落地,标准制定将是关键,它将为系统的统一性与规范化提供重要保障。

在实际应用中,主动与被动技术的融合将是提升内容安全系统有效性的重要路径。通过结合两者的优势,可以更全面地应对多变的伪造手段和复杂的应用场景。此外,随着大模型等新兴技术的不断发展,其在视觉内容安全中的应用潜力巨大。大模型凭借高准确率、强泛化能力及多模态处理能力,能够为内容安全技术的创新提供强有力的支撑,推动整个领域朝着更智能、更精确的方向发展。

合合信息凭借其在视觉内容安全领域的领先技术与深厚经验,持续推动行业创新与应用落地。作为行业的领先者,合合信息在图像篡改检测、人脸伪造鉴别等技术领域取得了显著成就,其解决方案在国内外得到了广泛应用与认可。通过不断优化技术,合合信息为推动视觉内容安全的标准化、智能化发展提供了强大的技术支持,并将继续在推动行业进步中发挥重要作用。

相关文章
|
2天前
|
调度 云计算 芯片
云超算技术跃进,阿里云牵头制定我国首个云超算国家标准
近日,由阿里云联合中国电子技术标准化研究院主导制定的首个云超算国家标准已完成报批,不久后将正式批准发布。标准规定了云超算服务涉及的云计算基础资源、资源管理、运行和调度等方面的技术要求,为云超算服务产品的设计、实现、应用和选型提供指导,为云超算在HPC应用和用户的大范围采用奠定了基础。
|
9天前
|
存储 运维 安全
云上金融量化策略回测方案与最佳实践
2024年11月29日,阿里云在上海举办金融量化策略回测Workshop,汇聚多位行业专家,围绕量化投资的最佳实践、数据隐私安全、量化策略回测方案等议题进行深入探讨。活动特别设计了动手实践环节,帮助参会者亲身体验阿里云产品功能,涵盖EHPC量化回测和Argo Workflows量化回测两大主题,旨在提升量化投研效率与安全性。
云上金融量化策略回测方案与最佳实践
|
11天前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
8830 20
|
15天前
|
Cloud Native Apache 流计算
资料合集|Flink Forward Asia 2024 上海站
Apache Flink 年度技术盛会聚焦“回顾过去,展望未来”,涵盖流式湖仓、流批一体、Data+AI 等八大核心议题,近百家厂商参与,深入探讨前沿技术发展。小松鼠为大家整理了 FFA 2024 演讲 PPT ,可在线阅读和下载。
4757 12
资料合集|Flink Forward Asia 2024 上海站
|
15天前
|
自然语言处理 数据可视化 API
Qwen系列模型+GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。
|
23天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
11天前
|
人工智能 容器
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
本文介绍了如何利用千问开发一款情侣刮刮乐小游戏,通过三步简单指令实现从单个功能到整体框架,再到多端优化的过程,旨在为生活增添乐趣,促进情感交流。在线体验地址已提供,鼓励读者动手尝试,探索编程与AI结合的无限可能。
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
|
10天前
|
消息中间件 人工智能 运维
12月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
871 57