灵活架构与超高性价比,数据湖解决方案助力AI技术实现落地应用

本文涉及的产品
对象存储 OSS,20GB 3个月
文件存储 NAS,50GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 阿里云针对AI行业的痛点,推出了AI行业的数据湖解决方案,该解决方案的核心是通过数据湖一体化的能力,轻松对接各种计算与处理引擎,直接在数据湖中对数据进行分析。

行业综述

基础设施日渐完善,AI行业正欲弯道超车
人工智能(ArtificialIntelligence)——简称AI,指由人类制造出来的机器所展现出来的智能,试图通过计算机来模拟人的思维过程和行为。到了2020年,随着5G、人机交互等技术的日渐成熟,AI应用也正迎来发展的新阶段。
在国内,AI行业目前主要包括计算机视觉、自然语言处理、脑机接口、人机融合、群体智能、自主无人系统等技术。目前我国在AI领域的投融资占全球的60%,而关于人工智能相关技术的论文产出,更是处于全球第一、二位。
自15年开始,中国AI市场规模逐年攀升。随着技术和设施的逐渐成熟,科技、制造业等业界巨头不断深入布局。数据显示,2018年中国人工智能市场规模约为339亿元,增长率达到56.2%。据预测,2020年中国在人工智能的市场规模将突破700亿元。

行业发展方向

AI技术相对成熟,但技术与产品之间产生脱节
虽然行业整体发展趋势良好,但是整个AI行业都在探索如何才能商业化,因此整个行业面临着高端”的AI技术与“中低端”的产业之间存在脱节现象。相对于我国庞大的经济体来说,目前AI技术的应用空间仍有待开发。因此如何积极探索AI技术的商业化,以及寻找技术可落地的应用场景成为了AI领域企业必须要考虑的事情。

面临的痛点

AI行业积极寻求商业化,但技术落地仍是难题
但是在积极寻求技术落地的过程中,AI领域企业经常会碰到以下几个问题:
1、日益增长的成本压力:由于目前AI技术的发展都是建立在大数据的基础上,通过大量数据让系统进行自动学习。因此企业需要长期投入大量的计算资源和存储资源,以此来让系统持续不断地学习,让系统更加智能。
2、数据价值待深挖:由于早期业务规划以及技术的原因,目前仍存在数据源分散的情况,数据源经常会存储于不同的系统、不同的团队或是不同的存储设备里。因此大量的数据不能很好地进行连通,不能充分做到从整体去挖掘数据价值。
3、安全合规:AI采集和处理的数据往往涉及用户行为、用户画像和消费数据,这类数据多数是较敏感的数据,监管部门对数据安全存储有明确要求。如何管理好日益增长的数据,也是需要提前规划和解决的问题。
12.png

AI行业数据湖解决方案

灵活架构与超高性价比,数据湖解决方案助力AI技术实现落地应用
13.png
阿里云针对AI行业的痛点,推出了AI行业的数据湖解决方案,该解决方案的核心是通过数据湖一体化的能力,轻松对接各种计算与处理引擎,直接在数据湖中对数据进行分析。
阿里云数据湖解决方案,能为企业提供统一的存储资源池,各种类型的数据集中统一存储在OSS对象存储,解决数据孤岛,避免多份数据分散在多种不同的系统,实现无缝对接多种计算引擎。
将数据存储在数据湖后,数据可以按照原始产生的形态直接存储,在需要分析阶段,再通过数据引擎进行处理,提供便捷的数据接入和数据消费通道,避免数据重复拷贝。
由于数据湖解决方案提供计算与存储解耦合的架构,因此整体的计算、存储资源具备更好的扩展性,降低运维管理难度,实现业务灵活部署。
最后,通过数据湖解决方案提供的数据流动、冷热分层和分级存储,既满足高性能场景的计算需求,提高资源利用率,也解决长期存储的成本压力。
阿里云数据湖解决方案,能为AI行业在数据采集阶段、数据预处理阶段、模型训练阶段和长期存储管理阶段提供最便捷、最高效、最实惠的服务。让数据的沉淀、存储、处理、分析更加简便快捷,帮助AI企业将技术落地,让技术与应用接壤,帮助企业释放最大的数据价值。

最佳实践

公司介绍
客户是国内自动驾驶行业TOP的汽车设计和制造商,融合前沿互联网和人工智能。

遇到的问题
1、数据量庞大,客户每天会产生几十TB的数据,如果将如此巨大的数据直接写入硬盘,不但无法保证性能,也无法对数据进行保护
2、如何将海量数据传递到云端计算集群,也是一件非常复杂和困难的事情,由于数据量庞大,需要定时定期地对数据进行维护,因此在这一过程中,其运维成本也是非常的高
3、在日常模型训练场景下,素材总量经常会高达上百TB,如果需要对这一部分的素材进行集中训练,就需要GPU反复随机地访问这部分素材,因此就需要文件系统提供低时延的文件访问能力
4、线下传统NAS存储存在单点性能瓶颈,并且容量和性能不支持弹性扩张,无法满足GPU的低延迟的文件访问需求

数据湖解决方案
14.png
针对各自动驾驶行业中涉及到的多元化的场景需求,阿里云为其量身打造了一套集采、传、存、算一体化的数据存储解决方案。
1、阿里云的闪电立方可将每天高达上百TB的数据上传至对象存储OSS中,传输速度最快可达到百Gbps。且闪电立方采用AES256端到端加密以及CRC一致性,在快速传输数据的同时,还保证了数据的安全性和可靠性
2、阿里云对象存储OSS能为数据提供12个9的数据安全保证和高达99.995%可用性SLA承诺,为数据提供全方位的安全保障。同时文件生命周期管理功能和数据分层归档功能,可自动选择将数据存放在低频或归档型的OSS,在简化操作,提高效率的同时,大大降低了数据存储成本
3、阿里云文件存储CPFS可以轻松地顶住性能压力的需求,CPFS的吞吐指标可弹性提升到每秒百GB的级别,随机访问小文件的延迟降低了8倍,在某些训练和深度学习场景下,速度整整提高了3倍,大大提升了文件计算和分析的效率

达到的效果
1、在数据采集、运输、上传和计算全链条上进行时间、成本、安全以及计算效率等方面的改善
2、解决了客户原本数据零散存放整合难、架构无法弹性应对业务波峰波谷、资源利用不充分等难题
3、客户综合成本直接降低30%以上

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
目录
打赏
0
0
0
0
2368
分享
相关文章
AI赋能油田巡检——无人机视频监控系统的技术解析
无人机油田巡检系统融合无人机硬件与AI视频监控技术,实现全域覆盖、智能分析和高效管理。通过多旋翼/固定翼无人机搭载高分辨率摄像头及传感器,采集多维数据;结合YOLOv9等算法进行异常检测,准确率高达98%。系统支持5G实时传输、边缘计算及集中化管理平台,提供可视化监控与预测性维护。基于开源框架设计,灵活扩展且成本低,大幅提升油田巡检效率与安全性。
数字化转型需要的技术:生成式AI时代的全栈能力图谱
本文探讨生成式AI推动下的数字化转型技术需求转变,从技术本质、实施路径、伦理规制三方面解构核心要素。技术本质从工具理性进化到能力体系,需建立模型思维、多模态交互和自主进化能力。实施路径分为认知重构、实验验证与迭代优化三个阶段。同时,文章介绍生成式人工智能认证(GAI认证)的战略价值,强调其在能力基准建立、技术合作及创新生态接入中的作用。最后,文章分析组织能力进化与未来技术前沿,如认知智能、具身智能和群体智能的演进方向,为企业提供全面的技术赋能与战略转型指导。
MCP详解:背景、架构与应用
模型上下文协议(MCP)是由Anthropic提出的开源标准,旨在解决大语言模型与外部数据源和工具集成的难题。作为AI领域的“USB-C接口”,MCP通过标准化、双向通信通道连接模型与外部服务,支持资源访问、工具调用及提示模板交互。其架构基于客户端-服务器模型,提供Python、TypeScript等多语言SDK,方便开发者快速构建服务。MCP已广泛应用于文件系统、数据库、网页浏览等领域,并被阿里云百炼平台引入,助力快速搭建智能助手。未来,MCP有望成为连接大模型与现实世界的通用标准,推动AI生态繁荣发展。
100 8
开源AI守护后厨——餐饮厨房视频安全系统的技术解析
餐饮厨房视频安全系统是一套融合开源AI技术与视频监控的智能化解决方案,涵盖实时检测、行为监测、数据分析、公众透明化及反馈闭环五大模块。系统通过YOLOv8、ResNet等算法实现后厨卫生与操作规范的精准监控,识别率达97%,问题响应时间缩短至秒级。同时支持后厨直播与监管对接,提升消费者信任和管理效率。其灵活开源的特点,为食品行业安全管理提供了高效、透明的新路径,未来可扩展至食品加工等领域。
AI大模型进阶系列(03) prompt 工程指南 | 实战核心技术有哪些?
本文深入讲解了AI大模型中的prompt工程。文章分析了role角色(system、user、assistant)的意义,message多轮会话记忆机制,以及prompt的核心三要素(上下文背景、输入内容、输出指示)。同时介绍了多种提示优化技术,如少样本提示、CoT链式思考、prompt chaining链式提示、思维树ToT提示等,还展示了让AI生成提示词的方法,为实际应用提供了全面指导。
AI驱动的开源治理——社会综合治理智慧化系统的技术突破
通过AI识别与智能监控精准捕捉不文明行为,生成证据链并分级预警,识别精度达98%;跨部门联动平台打破信息孤岛,实现多部门高效协作,事件处置时间缩短至5分钟;多场景适配的开源架构支持景区、校园等多样化需求,灵活部署边缘计算优化性能。试点成效显著,大幅提升治理效能。
40 14
AI智能导诊系统开发技术解析
智能导诊系统基于人工智能、大数据和医疗信息化技术,优化患者就医流程,提升资源匹配效率。其核心功能包括智能分诊、症状自评与风险评估及就医路径规划,通过自然语言处理、医学知识图谱、多模态交互等技术实现精准服务。系统可将门诊误挂率从23%降至6%,并显著提高急危重症识别效率,为患者提供全流程导航支持。
探讨 AI 驱动自适应数据采集技术
在当今互联网环境下,网页结构动态变化日益复杂,传统数据采集技术面临巨大挑战。本文探讨了基于AI算法的自适应数据采集方法,结合爬虫代理、Cookie与User-Agent设置等关键技术,应对动态页面变更。通过Python示例代码,展示如何稳定抓取目标网站数据,并分析该技术的优势、挑战及实际应用注意事项,为未来数据采集提供了新思路。
104 44
AI大模型进阶系列(01)看懂AI大模型的主流技术 | AI对普通人的本质影响是什么
本文分享了作者在AI领域的创作心得与技术见解,涵盖从获奖经历到大模型核心技术的深入解析。内容包括大模型推理过程、LLM类型、prompt工程参数配置及最佳实践,以及RAG技术和模型微调的对比分析。同时探讨了AI对社会和个人的影响,特别是在deepseek出现后带来的技术革新与应用前景。适合希望了解AI大模型技术及其实际应用的读者学习参考。
如何把技术创新从“无限可能”,聚焦到精选的几个?“TRIZ技术进化AI助手”不妨一试
企业创新面临诸多“坑”,尤其在技术竞争中常遇“卡脖子”问题。法思诺推出TRIZ技术进化AI助手,基于阿奇舒勒理论,集成几十条技术进化路线,从时间、空间和界面三大维度助力研发人员识别问题、分析现状并提供三条进化路线参考。该工具可有效帮助企业节约资源、规避风险,探索不同技术路径。通过测试如触觉传感器等35项我国“卡脖子”关键技术,验证其有效性。真创新,不平凡!欢迎试用与交流。

云存储

+关注
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等