用SkyWalking做分布式追踪和应用性能监控系统

本文涉及的产品
应用实时监控服务-应用监控,每月50GB免费额度
应用实时监控服务-用户体验监控,每月100OCU免费额度
简介: SkyWalking 是观察性分析平台和应用性能管理系统。提供分布式追踪、服务网格遥测分析、度量聚合和可视化一体化解决方案。

【转载请注明出处】:https://developer.aliyun.com/article/766698

SkyWalking 是观察性分析平台和应用性能管理系统。提供分布式追踪、服务网格遥测分析、度量聚合和可视化一体化解决方案。

特性:

  • 多种监控手段,语言探针和service mesh
  • 多语言自动探针,Java,.NET Core和Node.JS
  • 轻量高效,不需要大数据
  • 模块化,UI、存储、集群管理多种机制可选
  • 支持告警
  • 优秀的可视化方案

Skywalking 技术架构
image.png

整个系统分为三部分:

  • agent:采集tracing(调用链数据)和metric(指标)信息并上报
  • OAP:收集tracing和metric信息通过analysis core模块将数据放入持久化容器中(ES,H2(内存数据库),mysql等等),并进行二次统计和监控告警
  • webapp:前后端分离,前端负责呈现,并将查询请求封装为graphQL提交给后端,后端通过ribbon做负载均衡转发给OAP集群,再将查询结果渲染展示

Skywalking也提供了其他的一些特性:

  • 配置重载:支持通过jvm参数覆写默认配置,支持动态配置管理
  • 集群管理:这个主要体现在OAP,通过集群部署分担数据上报的流量压力和二次计算的计算压力,同时集群也可以通过配置切换角色,分别面向数据采集(collector)和计算(aggregator,alarm),需要注意的是agent目前不支持多collector负载均衡,而是随机从集群中选择一个实例进行数据上报
  • 支持k8s和mesh
  • 支持数据容器的扩展,例如官方主推是ES,通过扩展接口,也可以实现插件去- - 支持其他的数据容器
  • 支持数据上报receiver的扩展,例如目前主要是支持gRPC接受agent的上报,但是也可以实现插件支持其他类型的数据上报(官方默认实现了对Zipkin,telemetry和envoy的支持)
  • 支持客户端采样和服务端采样,不过服务端采样最有意义
  • 官方制定了一个数据查询脚本规范:OAL(Observability Analysis Language),语法类似Linq,以简化数据查询扩展的工作量
  • 支持监控预警,通过OAL获取数据指标和阈值进行对比来触发告警,支持webhook扩展告警方式,支持统计周期的自定义,以及告警静默防止重复告警
数据容器

由于Skywalking并没有自己定制的数据容器或者使用多种数据容器增加复杂度,而是主要使用ElasticSearch(当然开源的基本上都是这样来保持简洁,例如Pinpoint也只使用了HBase),所以数据容器的特性以及自己数据结构基本上就限制了业务的上限,以ES为例:

  • ES查询功能异常强大,在数据筛选方面碾压其他所有容器,在数据筛选潜力巨大(Skywalking默认的查询维度就比使用HBase的Pinpoint强很多)
  • 支持sharding分片和replicas数据备份,在高可用/高性能/大数据支持都非常好
  • 支持批量插入,高并发下的插入性能大大增强
  • 数据密度低,源于ES会提前构建大量的索引来优化搜索查询,这是查询功能强大和性能好的代价,但是链路跟踪往往有非常多的上下文需要记录,所以Skywalking把这些上下文二进制化然后通过Base64编码放入data_binary字段并且将字段标记为not_analyzed来避免进行预处理建立查询索引

总体来说,Skywalking尽量使用ES在大数据和查询方面的优势,同时尽量减少ES数据密度低的劣势带来的影响,从目前来看,ES在调用链跟踪方面是不二的数据容器,而在数据指标方面,ES也能中规中矩的完成业务,虽然和时序数据库相比要弱一些,但在PB级以下的数据支持也不会有太大问题。

数据结构

如果说数据容器决定了上限,那么数据结构则决定了实际到达的高度。Skywalking的数据结构主要为:

  • 数据维度(ES索引为skywalking_*_inventory)

    1. service:服务
    2. instance:实例
    3. endpoint:接口
    4. network_adress:外部依赖
  • 数据内容

    1. 原始数据

      • 调用链跟踪数据(调用链的trace信息,ES索引为skywalking_segment,Skywalking主要的数据消耗都在这里)
      • 指标(主要是jvm或者envoy的运行时指标,例如ES索引skywalking_instance_jvm_cpu)
    2. 二次统计指标

      • 指标(按维度/时间二次统计出来的例如pxx、sla等指标,例如ES索引skywalking_database_access_p75_month)
      • 数据库慢查询记录(数据库索引:skywalking_top_n_database_statement)
    3. 关联关系(维度/指标之间的关联关系,ES索引为skywalking_relation)
    4. 特别记录

      • 告警信息(ES索引为skywalking_alarm_record)
      • 并发控制(ES索引为skywalking_register_lock)

其中数量占比最大的就是调用链跟踪数据和各种指标,而这些数据均可以通过OAP设置过期时间,以降低历史数据的对磁盘占用和查询效率的影响。

调用链跟踪数据

作为Skywalking的核心数据,调用链跟踪数据(skywalking_segment)基本上奠定了整个系统的基础,而如果要详细的了解调用链跟踪的话,就不得不提到openTracing

openTracing基本上是目前开源调用链跟踪系统的一个事实标准,它制定了调用链跟踪的基本流程和基本的数据结构,同时也提供了各个语言的实现。如果用一张图来表现openTracing,则是如下:

openTracing基本结构

其中:

  • SpanContext:一个类似于MDC(Slfj)或者ThreadLocal的组件,负责整个调用链数据采集过程中的上下文保持和传递
  • Trace:一次调用的完整记录

    • Span:一次调用中的某个节点/步骤,类似于一层堆栈信息,Trace是由多个Span组成,Span和Span之间也有父子或者并列的关系来标志这个节点/步骤在整个调用中的位置

      • Tag:节点/步骤中的关键信息
      • Log:节点/步骤中的详细记录,例如异常时的异常堆栈
    • Baggage:和SpanContext一样并不属于数据结构而是一种机制,主要用于跨Span或者跨实例的上下文传递,Baggage的数据更多是用于运行时,而不会进行持久化

以一个Trace为例:

span间的关系

首先是外部请求调用A,然后A依次同步调用了B和C,而B被调用时会去同步调用D,C被调用的时候会依次同步调用E和F,F被调用的时候会通过异步调用G,G则会异步调用H,最终完成一次调用。

上图是通过Span之间的依赖关系来表现一个Trace,而在时间线上,则可以有如下的表达:

span的调用顺序

当然,如果是同步调用的话,父Span的时间占用是包括子Span的时间消耗的。

而落地到Skywalking中,我们以一条skywalking_segment的记录为例:

{
    "trace_id": "52.70.15530767312125341",
    "endpoint_name": "Mysql/JDBI/Connection/commit",
    "latency": 0,
    "end_time": 1553076731212,
    "endpoint_id": 96142,
    "service_instance_id": 52,
    "version": 2,
    "start_time": 1553076731212,
    "data_binary": "CgwKCjRGnPvp5eikyxsSXhD///////////8BGMz62NSZLSDM+tjUmS0wju8FQChQAVgBYCF6DgoHZGIudHlwZRIDc3FsehcKC2RiLmluc3RhbmNlEghyaXNrZGF0YXoOCgxkYi5zdGF0ZW1lbnQYAiA0",
    "service_id": 2,
    "time_bucket": 20190320181211,
    "is_error": 0,
    "segment_id": "52.70.15530767312125340"
}
AI 代码解读

其中:

  • trace_id:本次调用的唯一id,通过snowflake模式生成
  • endpoint_name:被调用的接口
  • latency:耗时
  • end_time:结束时间戳
  • endpoint_id:被调用的接口的唯一id
  • service_instance_id:被调用的实例的唯一id
  • version:本数据结构的版本号
  • start_time:开始时间戳
  • data_binary:里面保存了本次调用的所有Span的数据,序列化并用Base64编码,不会进行分析和用于查询
  • service_id:服务的唯一id
  • time_bucket:调用所处的时段
  • is_error:是否失败
  • segment_id:数据本身的唯一id,类似于主键,通过snowflake模式生成

这里可以看到,目前Skywalking虽然相较于Pinpoint来说查询的维度要多一些,但是也很有限,而且除了endPoint,并没有和业务有关联的字段,只能通过时间/服务/实例/接口/成功标志/耗时来进行非业务相关的查询,如果后续要增强业务相关的搜索查询的话,应该还需要增加一些用于保存动态内容(如messageId,orderId等业务关键字)的字段用于快速定位

指标

指标数据相对于Tracing则要简单得多了,一般来说就是指标标志、时间戳、指标值,而Skywalking中的指标有两种:一种是采集的原始指标值,例如jvm的各种运行时指标(例如cpu消耗、内存结构、GC信息等);一种是各种二次统计指标(例如tp性能指标、SLA等,当然也有为了便于查询的更高时间维度的指标,例如基于分钟、小时、天、周、月)

例如以下是索引skywalking_endpoint_cpm_hour中的一条记录,用于标志一个小时内某个接口的cpm指标:

{
    "total": 8900,
    "service_id": 5,
    "time_bucket": 2019031816,
    "service_instance_id": 5,
    "entity_id": "7",
    "value": 148
}
AI 代码解读

各个字段的释义如下:

  • total:一分钟内的调用总量
  • service_id:所属服务的唯一id
  • time_bucket:统计的时段
  • service_instance_id:所属实例的唯一id
  • entity_id:接口(endpoint)的唯一id
  • value:cpm的指标值(cpm=call per minute,即total/60)
agent

agent(apm-sniffer)是Skywalking的Java探针实现,主要负责:

  • 采集应用实例的jvm指标
  • 通过切向编程进行数据埋点,采集调用链数据
  • 通过RPC将采集的数据上报

当然,agent还实现了客户端采样,不过在APM监控系统里进行客户端数据采样都是没有灵魂的,所以这里就不再赘述了。

首先,agent通过 org.apache.skywalking.apm.agent.core.boot.BootService 实现了整体的插件化,agent启动会加载所有的BootService实现,并通过 ServiceManager 来管理这些插件的生命周期,采集jvm指标、gRPC连接管理、调用链数据维护、数据上报OAP这些服务均是通过这种方式扩展。

然后,agent还通过bytebuddy以javaagent的模式,通过字节码增强的机制来构造AOP环境,再提供PluginDefine的规范方便探针的开发,最终实现非侵入性的数据埋点,采集调用链数据。

OAP

同agent类似,OAP作为Skywalking最核心的模块,也实现了自己的扩展机制,不过在这里叫做Module,具体可以参考library-module,在module的机制下,Skywalking实现了自己必须核心组件:

  • core:整个OAP核心业务(remoting、cluster、storage、analysis、query、alarm)的规范和接口
  • cluster:集群管理的具体实现
  • storage:数据容器的具体实现
  • query:为前端提供的查询接口的具体实现
  • receiver:接收探针上报数据的接收器的具体实现
  • alarm:监控告警的具体实现

以及一个可选组件:

  • telemetry:用于监控OAP自身的健康状况

而前面提到的OAP的高扩展性则体现在核心业务的规范均定义在了core中,如果有需要自己扩展的,只需要自己单独做自己的实现,而不需要做侵入式的改动,最典型的示例则是官方支持的storage,不仅支持单机demo的内存数据库H2和经典的ES,连目前开源的Tidb都可以接入。

安装
  1. 下载最新的安装包
  2. 解压,并进入bin目录执行startup.sh启动
  3. 访问http://localhost:8080/ 即可看到面板
  4. 启动服务

    添加如下VM 参数:
    AI 代码解读
-javaagent:${agent_home}/agent/skywalking-agent.jar -Dskywalking.agent.service_name=${service_name}
AI 代码解读

image.png

【转载请注明出处】:https://developer.aliyun.com/article/766698

相关实践学习
通过云拨测对指定服务器进行Ping/DNS监测
本实验将通过云拨测对指定服务器进行Ping/DNS监测,评估网站服务质量和用户体验。
目录
打赏
0
0
0
0
3
分享
相关文章
DeepSeek进阶开发与应用4:DeepSeek中的分布式训练技术
随着深度学习模型和数据集规模的扩大,单机训练已无法满足需求,分布式训练技术应运而生。DeepSeek框架支持数据并行和模型并行两种模式,通过将计算任务分配到多个节点上并行执行,显著提高训练效率。本文介绍DeepSeek中的分布式训练技术,包括配置与启动方法,帮助用户轻松实现大规模模型训练。数据并行通过`MirroredStrategy`同步梯度,适用于大多数模型;模型并行则通过`ParameterServerStrategy`异步处理大模型。DeepSeek简化了分布式环境配置,支持单机多卡和多机多卡等场景。
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
183 7
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
120 7
构建高可用性GraphRAG系统:分布式部署与容错机制
【10月更文挑战第28天】作为一名数据科学家和系统架构师,我在构建和维护大规模分布式系统方面有着丰富的经验。最近,我负责了一个基于GraphRAG(Graph Retrieval-Augmented Generation)模型的项目,该模型用于构建一个高可用性的问答系统。在这个过程中,我深刻体会到分布式部署和容错机制的重要性。本文将详细介绍如何在生产环境中构建一个高可用性的GraphRAG系统,包括分布式部署方案、负载均衡、故障检测与恢复机制等方面的内容。
336 4
构建高可用性GraphRAG系统:分布式部署与容错机制
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
241 4
|
5月前
|
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
108 5
【AI系统】分布式通信与 NVLink
进入大模型时代后,AI的核心转向大模型发展,训练这类模型需克服大量GPU资源及长时间的需求。面对单个GPU内存限制,跨多个GPU的分布式训练成为必要,这涉及到分布式通信和NVLink技术的应用。分布式通信允许多个节点协作完成任务,而NVLink则是一种高速、低延迟的通信技术,用于连接GPU或GPU与其它设备,以实现高性能计算。随着大模型的参数、数据规模扩大及算力需求增长,分布式并行策略,如数据并行和模型并行,变得至关重要。这些策略通过将模型或数据分割在多个GPU上处理,提高了训练效率。此外,NVLink和NVSwitch技术的持续演进,为GPU间的高效通信提供了更强的支持,推动了大模型训练的快
127 0
NServiceBus:打造企业级服务总线的利器——深度解析这一面向消息中间件如何革新分布式应用开发与提升系统可靠性
【10月更文挑战第9天】NServiceBus 是一个面向消息的中间件,专为构建分布式应用程序设计,特别适用于企业级服务总线(ESB)。它通过消息队列实现服务间的解耦,提高系统的可扩展性和容错性。在 .NET 生态中,NServiceBus 提供了强大的功能,支持多种传输方式如 RabbitMQ 和 Azure Service Bus。通过异步消息传递模式,各组件可以独立运作,即使某部分出现故障也不会影响整体系统。 示例代码展示了如何使用 NServiceBus 发送和接收消息,简化了系统的设计和维护。
126 3
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
消息队列系统中的确认机制在分布式系统中如何实现
消息队列系统中的确认机制在分布式系统中如何实现