面向零售业的AI驱动的视频分析

简介: 人工智能(AI)与数据科学直接相关,后者旨在从一系列信息中提取业务价值。 该价值可以包括扩展预测能力,规律知识,明智的决策,降低成本等。换句话说,人工智能以大量信息运行,分析输入数据,并根据这些信息开发自适应解决方案。

AI-Driven-Video-Analytics-for-Grocery-Stores-1068x656-1.jpg

人工智能(AI)与数据科学直接相关,后者旨在从一系列信息中提取业务价值。 该价值可以包括扩展预测能力,规律知识,明智的决策,降低成本等。换句话说,人工智能以大量信息运行,分析输入数据,并根据这些信息开发自适应解决方案。


在现代世界,零售业正在迅速增加人工智能在所有可能的工作流程中的应用。因此,通过应用分析来利用机会无疑可以改进食品杂货行业的各种操作。有了人工智能,最大的连锁超市实现了雄心勃勃的目标:


1)改善和扩展客户服务能力


2)自动化供应链计划和订单交付


3)减少产品浪费


4)加强对缺货和库存过多的管理


5)加强需求预测


人工智能解决方案的生态系统是广泛的,能够满足所有杂货店零售商的大多数需求(从大型连锁店到最小的企业)。到目前为止,在隔离期间,在线商品分析已经成为管理缺货情况的真正“救世主”。通过智能数据驱动的方法,超市可以处理大量的信息,准确预测消费者的需求和供应库存,并生成最准确的价格和购买建议。因此,即使在冠状病毒大流行等最危急的情况下,杂货零售商也将继续盈利。话虽如此,很明显,所有公司现在都需要针对COVID-19立即采取行动计划。


视频监控的新水平


通常,大多数杂货店都具有连续的视频监视系统。以前,此类系统的安装仅出于安全目的:控制产品的安全性并防止盗窃。但是现在,人工智能视频分析能够监视客户从进入商店到付款的整个过程。它是如何工作的,为什么商店需要它?


像亚马逊和沃尔玛这样的大型连锁超市使用高科技相机,利用自动物体识别(automatic object identification)技术。这种系统通常用于无人驾驶的电动汽车上,通过计算机监控乘客行为并处理视觉信息。但商场视频分析的主要目标是确定哪些商品有很高的需求,哪些产品的购买者最常回到货架上,等等。此外,相机还可以识别人脸,确定顾客的身高、体重、年龄和其他身体特征。随后,人工智能(基于所有获得的数据)从特定的消费者群体中识别出最受欢迎的产品,并提供更改定价策略的选项。计算机自动完成所有这些过程,不需要人工干预。


防止商品缺货


零售业中的人工智能能够解决人们无法应对的问题。一个人实际上无法观看所有视频监控,没有足够的时间进行此操作,而且人类的视觉并不完美。但这不再是必需的!商场的视频分析可完美应对此类任务。例如,将摄像头连接到商店的自动化仓库系统,并在货架上配备传感器,可以发现库存记录中的漏洞,促进调查。商场数据分析还可以监视库存并提供有关补货需求的信号。如上所述的面部识别技术能够将人的面部与罪犯(或通缉犯)的面部进行比较,并警告安全人员。


促进人流和商店布局


收集的有关客户行为的数据可帮助超市经理优化商店布局。此外,计算机程序可以设计最佳的布局并对其进行测试,从而产生总体上更好的客户体验,并增加商店的利润。


可以收集有关进入商店的人数以及他们花费的购物时间的数据。基于这些数据,人工智能可以预测人流量的大小和人们排队等候的时间。这将有助于改善客户服务并减少员工成本。 换句话说,AI能够在一天的各个小时制定最佳的商店管理计划,从而为企业带来最大的收益。 例如:


1)优化展示位置和平面布置


2)改善策略性人员分配


3)在停留时间内和购买之间得出相关性


4)预测各个购物群体的产品


增强客户体验


每个企业都应尽可能了解其受众,以提供最佳服务。商场中的AI使用视频智能软件提供详细的人口统计数据,并详细分析购物习惯。这些信息为商场提供了无限的机会来增加利润。通过了解他们的顾客,商场经理可以最大化顾客的购物体验,创造有利条件(专门针对顾客的喜好)。此外,用于杂货店的AI可以帮助产生给定目标市场的最准确的需求预测模型。


除了与目标受众合作之外,管理人员还可以使用从视频分析获得的数据将信息传输到营销部门。通过探索其他受众,营销人员可以制定策略,通过创建相关的广告、促销和销售来吸引新客户。此外,商场可以为小型购物群体创建单独的展示柜(纯素食产品或无麸质产品),以满足他们的需求。


在商场所有现有的人工智能技术中,视频内容分析可在几乎所有活动中提供最大的支持:销售,营销,广告和布局策略。通过优化这些流程,商场不仅可以节省和减少损失,还可以通过增加利润来扩展业务。主要目标不仅是要满足客户需求,而且要提高客户保留率。


原文链接
相关文章
|
27天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
2月前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
62 2
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
智能化软件测试:AI驱动的自动化测试策略与实践####
本文深入探讨了人工智能(AI)在软件测试领域的创新应用,通过分析AI技术如何优化测试流程、提升测试效率及质量,阐述了智能化软件测试的核心价值。文章首先概述了传统软件测试面临的挑战,随后详细介绍了AI驱动的自动化测试工具与框架,包括自然语言处理(NLP)、机器学习(ML)算法在缺陷预测、测试用例生成及自动化回归测试中的应用实例。最后,文章展望了智能化软件测试的未来发展趋势,强调了持续学习与适应能力对于保持测试策略有效性的重要性。 ####
|
26天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
104 19
|
15天前
|
存储 人工智能 大数据
AI驱动下的云存储创新
随着大数据时代的到来,云存储作为数据存储和管理的核心基础设施,其重要性日益凸显。同时, AI 快速发展也为云存储的进化与创新提供了强大的驱动力。本话题将解读AI 驱动下云存储的进化趋势,分享阿里云存储的创新技术,助力企业实现数字化升级。
|
21天前
|
机器学习/深度学习 人工智能 搜索推荐
AI与体育训练:运动表现分析
【10月更文挑战第31天】本文探讨了AI在体育训练中的应用,特别是在运动表现分析方面。通过数据收集与处理、深度分析与挖掘、实时反馈与调整三个环节,AI为运动员和教练提供了高效、个性化的训练计划和比赛策略,显著提升了训练效率和比赛成绩。未来,AI将在数据隐私、情感理解及跨学科合作等方面继续发展,为体育事业带来更多可能性。
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
50 3
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI驱动下的IT运维革命###
本文探讨了人工智能(AI)技术在IT运维领域的创新应用,强调其在提升效率、预防故障及优化资源配置中的关键作用,揭示了智能运维的新趋势。 ###
|
2月前
|
人工智能 自然语言处理 算法
几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
【10月更文挑战第8天】几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
95 1
几款宝藏级AI阅读工具推荐!论文分析、文档总结必备神器!
|
27天前
|
数据采集 人工智能 搜索推荐