利用AI技术,打造更强大的处理芯片

简介: 目前各家公司采取的主流研发提速手段之一,就是利用AI技术协助构建更强大的AI芯片。其中,设计流程后端(即物理设计阶段)对AI工具的支持表现得尤为成熟,而各早期采用者也得到了相当可观的收益。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

当前,越来越多的初创企业与大型半导体公司正争相推出新型AI芯片。Synopsys、Cadence以及Mentor Graphics等电子工具与设计服务厂商,则希望寻求更多前所未有的方案,帮助设计师们加快产品投产速度。

有趣的点来了:目前各家公司采取的主流研发提速手段之一,就是利用AI技术协助构建更强大的AI芯片。其中,设计流程后端(即物理设计阶段)对AI工具的支持表现得尤为成熟,而各早期采用者也得到了相当可观的收益。

licltF66DzNyE_600

图一:这是一块英伟达Drive AGX Orin芯片,其结构极度复杂,包含多达170亿个晶体管。有趣的是,目前业界正利用AI技术为此类芯片提供更高效的设计支持。

相关问题

很多朋友可能并不熟悉芯片制造的具体方式,这里我就用几个常见问题进行说明。在确定了芯片的基本逻辑(往往需要耗费数月甚至数年时间)之后,接下来就是物理设计流程了——更具体地讲,工程师们需要确定每个晶体管应放置在何处、不同晶体管之间又要如何互连。这个过程,被称为布局与布线。现代芯片上往往包含数十亿个晶体管,因此布局与布线的设计与测试往往需要耗费数名工程师长达20到30周的时间才能完成。一旦不小心出了错,芯片的实际运行效率可能要比设计要求更低、功耗更高、成本增加或者压根无法正常使用。但遗憾的是,并不存在一种百试百灵的“正确”芯片布局方法。面对这小小方寸,我们拥有成千上万种可能的选择,而研发人员的任务就是在芯片的三大主要设计指标中做出权衡:性能、功耗与面积(统称PPA)。

实际上,设计团队相当于面对着一个规模庞大的“搜索”难题:单是平面图形搜索,就涵盖惊人的1090,000 万种可能性。与之对应,国际象棋中“只”包含10123种可能性,而围棋则包含10360种可能状态。之所以要用棋类作类比,是因为目前的AI软件完全能够以下棋的方式“玩转”物理设计。虽然AI方案往往需要耗费巨量计算资源,但同时也能够快速对多到难以想象的选项做出分类,优化参数实现一系列既定目标,从而高效为芯片设计找到最理想的PPA组合。

强化学习——攻克芯片设计难题的关键

AI领域存在一个无监督学习分支,被称为强化学习(RL),能够以试错方式探索并掌握解决问题的方法。具体来讲,计算机会不断“尝试”一个个解决方案,并通过结果的趋好/趋坏来不断增强该解决方案中的参数。在经过数万亿次的重复之后,解决方案终将收敛——这就代表着“最佳实践”。

电子设计自动化(EDA)厂商Synopsys公司一直在与客户联手推进这方面试验,并获得了令人欣喜的结果。

liuHn6xI54erQ_600

图二:设计团队利用强化学习加快网络芯片、移动芯片、车载芯片以及AI加速芯片等物理设计项目,并取得了惊人的成果。

图二所示,总结了Synopsys及其客户在复杂芯片设计当中完成的四个试验性项目。平均来看,这些项目的完成速度比以往人工方式要快86%,一位数据科学家即可替代原本的四到五名专业设计工程师,且各个项目全部达到或者超过了既定的PPA目标。有趣的是,由AI生成的某些设计结果颇有反直觉的效果,会以人类设计团队几乎不可能想到的非常规形式进行晶体管部署。但结果不言而喻,这些成果更快、更高效,也让企业能够更快将产品投放市场。

总结

在与Synopsys研发团队的交流当中,我清楚地意识到,在物理设计当中采用RL技术仅仅是AI应用的冰山一角。未来,AI与机器学习将被广泛引入集成电路设计领域的各类常见工作流程当中。我还想到英伟达公司CEO黄仁勋在2016年首次发布Saturn V时的评论——顺带一提,Saturn V是英伟达内部开发的基于GPU的超级计算机,当时在全球超算排行榜中占据第30名。黄先生预测称,Saturn V将成为英伟达手中一张强有力的王牌,帮助内部设计工程师们提高生产力并推出更优质的产品。再结合Synopsys在强化学习方面的早期研究成果,相信大家更能够理解AI辅助设计的重要份量,以及黄仁勋对这一方案的认可与期望。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-23
本文来自:“科技行者”,了解相关信息可以关注“科技行者

相关文章
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索AI技术在文本生成中的应用与挑战
【9月更文挑战第26天】本文深入探讨了AI技术在文本生成领域的应用,并分析了其面临的挑战。通过介绍AI文本生成的基本原理、应用场景以及未来发展趋势,帮助读者全面了解该技术的潜力和局限性。同时,文章还提供了代码示例,展示了如何使用Python和相关库实现简单的文本生成模型。
32 9
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
AI与未来医疗:革命性的技术融合
本文探讨了人工智能(AI)在未来医疗领域的应用及其潜在影响。通过分析当前的技术进步和具体案例,如AI辅助诊断、个性化治疗方案及医疗机器人等,展示了AI如何提高医疗服务的效率和准确性,降低医疗成本,并增强患者的治疗体验。同时,文章也讨论了AI在医疗中面临的伦理和隐私问题,以及解决这些问题的可能途径。最后,本文对AI在未来医疗中的前景进行了展望,指出其将继续深刻改变医疗保健行业,为患者和医疗专业人员带来更多福祉。
|
9天前
|
机器学习/深度学习 存储 人工智能
AI与未来医疗:技术的飞跃与挑战
在当今科技迅速发展的时代,人工智能(AI)正以前所未有的速度渗透到各行各业。特别是在医疗领域,AI的潜力和应用前景令人瞩目。本文将探讨AI在未来医疗中的角色,分析其带来的变革与挑战,并展望未来的发展方向。
|
1天前
|
人工智能 自然语言处理 搜索推荐
AI技术在智能客服系统中的应用与挑战
【9月更文挑战第32天】本文将探讨AI技术在智能客服系统中的应用及其面临的挑战。我们将分析AI技术如何改变传统客服模式,提高服务质量和效率,并讨论在实际应用中可能遇到的问题和解决方案。
91 65
|
2天前
|
人工智能 缓存 搜索推荐
OPENAI DevDay 2024:推动AI技术的新边界
在今年的OPENAI DevDay活动中,尽管形式更为低调,但OpenAI依然带来了四项令人瞩目的技术创新,展示了其在推动人工智能开发者生态方面的持续努力,以及向更高效、用户友好的AI工具转型的决心。我将为大家详细介绍这些新产品
26 10
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术性文章
【9月更文挑战第27天】本文将深入探讨人工智能(AI)技术在现代社会的应用和发展。我们将从AI的基本概念开始,探讨其在各个领域的应用,包括医疗保健、交通、金融等。我们还将讨论AI技术的挑战和未来趋势。
|
10天前
|
机器学习/深度学习 人工智能 搜索推荐
AI与未来医疗:革命性的技术,守护人类健康
本文探讨了人工智能在医疗领域的应用及其对未来的深远影响。通过具体案例和深入分析,我们了解到AI如何提升医疗诊断的准确性、优化治疗方案以及改善患者管理。从医学影像分析到个性化治疗,再到医疗机器人的应用,AI正在全方位地改变医疗行业。同时,我们也讨论了这一技术带来的挑战和伦理问题,并提出了相应的对策。总之,AI在医疗领域的广泛应用不仅为医生提供了有力支持,也显著提高了患者的生活质量。
|
10天前
|
人工智能 搜索推荐 算法
AI技术如何重塑未来医疗行业
本文探讨了人工智能 (AI) 在医疗行业中的应用及其对未来的深远影响。通过分析AI在疾病诊断、个性化治疗及医疗管理中的具体作用,揭示了AI技术如何提升医疗服务的效率和质量。同时,文章也讨论了在广泛应用AI过程中需要面对的伦理与法律问题。
29 3
|
7天前
|
数据采集 机器学习/深度学习 人工智能
云栖实录 | GenAI 时代 AI Infra 工程技术趋势与平台演进
本文根据2024云栖大会实录整理而成,演讲信息如下: 演讲人:林伟 | 阿里云智能集团研究员、阿里云人工智能平台 PAI 负责人;黄博远|阿里云智能集团资深产品专家、阿里云人工智能平台 PAI 产品负责人 活动:2024 云栖大会 - AI Infra 核心技术专场、人工智能平台 PAI 年度发布专场
|
8天前
|
机器学习/深度学习 人工智能 开发框架
智能ai量化高频策略交易软件、现货合约跟单模式开发技术规则
该项目涵盖智能AI量化高频策略交易软件及现货合约跟单模式开发,融合人工智能、量化交易与软件工程。软件开发包括需求分析、技术选型、系统构建、测试部署及运维;跟单模式则涉及功能定义、策略开发、交易执行、终端设计与市场推广,确保系统高效稳定运行。

热门文章

最新文章

下一篇
无影云桌面