利用AI技术,打造更强大的处理芯片

简介: 目前各家公司采取的主流研发提速手段之一,就是利用AI技术协助构建更强大的AI芯片。其中,设计流程后端(即物理设计阶段)对AI工具的支持表现得尤为成熟,而各早期采用者也得到了相当可观的收益。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

当前,越来越多的初创企业与大型半导体公司正争相推出新型AI芯片。Synopsys、Cadence以及Mentor Graphics等电子工具与设计服务厂商,则希望寻求更多前所未有的方案,帮助设计师们加快产品投产速度。

有趣的点来了:目前各家公司采取的主流研发提速手段之一,就是利用AI技术协助构建更强大的AI芯片。其中,设计流程后端(即物理设计阶段)对AI工具的支持表现得尤为成熟,而各早期采用者也得到了相当可观的收益。

licltF66DzNyE_600

图一:这是一块英伟达Drive AGX Orin芯片,其结构极度复杂,包含多达170亿个晶体管。有趣的是,目前业界正利用AI技术为此类芯片提供更高效的设计支持。

相关问题

很多朋友可能并不熟悉芯片制造的具体方式,这里我就用几个常见问题进行说明。在确定了芯片的基本逻辑(往往需要耗费数月甚至数年时间)之后,接下来就是物理设计流程了——更具体地讲,工程师们需要确定每个晶体管应放置在何处、不同晶体管之间又要如何互连。这个过程,被称为布局与布线。现代芯片上往往包含数十亿个晶体管,因此布局与布线的设计与测试往往需要耗费数名工程师长达20到30周的时间才能完成。一旦不小心出了错,芯片的实际运行效率可能要比设计要求更低、功耗更高、成本增加或者压根无法正常使用。但遗憾的是,并不存在一种百试百灵的“正确”芯片布局方法。面对这小小方寸,我们拥有成千上万种可能的选择,而研发人员的任务就是在芯片的三大主要设计指标中做出权衡:性能、功耗与面积(统称PPA)。

实际上,设计团队相当于面对着一个规模庞大的“搜索”难题:单是平面图形搜索,就涵盖惊人的1090,000 万种可能性。与之对应,国际象棋中“只”包含10123种可能性,而围棋则包含10360种可能状态。之所以要用棋类作类比,是因为目前的AI软件完全能够以下棋的方式“玩转”物理设计。虽然AI方案往往需要耗费巨量计算资源,但同时也能够快速对多到难以想象的选项做出分类,优化参数实现一系列既定目标,从而高效为芯片设计找到最理想的PPA组合。

强化学习——攻克芯片设计难题的关键

AI领域存在一个无监督学习分支,被称为强化学习(RL),能够以试错方式探索并掌握解决问题的方法。具体来讲,计算机会不断“尝试”一个个解决方案,并通过结果的趋好/趋坏来不断增强该解决方案中的参数。在经过数万亿次的重复之后,解决方案终将收敛——这就代表着“最佳实践”。

电子设计自动化(EDA)厂商Synopsys公司一直在与客户联手推进这方面试验,并获得了令人欣喜的结果。

liuHn6xI54erQ_600

图二:设计团队利用强化学习加快网络芯片、移动芯片、车载芯片以及AI加速芯片等物理设计项目,并取得了惊人的成果。

图二所示,总结了Synopsys及其客户在复杂芯片设计当中完成的四个试验性项目。平均来看,这些项目的完成速度比以往人工方式要快86%,一位数据科学家即可替代原本的四到五名专业设计工程师,且各个项目全部达到或者超过了既定的PPA目标。有趣的是,由AI生成的某些设计结果颇有反直觉的效果,会以人类设计团队几乎不可能想到的非常规形式进行晶体管部署。但结果不言而喻,这些成果更快、更高效,也让企业能够更快将产品投放市场。

总结

在与Synopsys研发团队的交流当中,我清楚地意识到,在物理设计当中采用RL技术仅仅是AI应用的冰山一角。未来,AI与机器学习将被广泛引入集成电路设计领域的各类常见工作流程当中。我还想到英伟达公司CEO黄仁勋在2016年首次发布Saturn V时的评论——顺带一提,Saturn V是英伟达内部开发的基于GPU的超级计算机,当时在全球超算排行榜中占据第30名。黄先生预测称,Saturn V将成为英伟达手中一张强有力的王牌,帮助内部设计工程师们提高生产力并推出更优质的产品。再结合Synopsys在强化学习方面的早期研究成果,相信大家更能够理解AI辅助设计的重要份量,以及黄仁勋对这一方案的认可与期望。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-23
本文来自:“科技行者”,了解相关信息可以关注“科技行者

相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
52 10
|
2天前
|
人工智能 安全 算法
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
2024年12月11日,由中国计算机学会计算机视觉专委会主办的“打造大模型时代的可信AI”论坛在上海举行。论坛汇聚了来自多家知名学术机构和企业的顶尖专家,围绕AI的技术风险与治理挑战,探讨如何在大模型时代确保AI的安全性和可信度,推动技术创新与安全治理并行。论坛重点关注计算机视觉领域的最新进展,提出了多项技术手段和治理框架,为AI的健康发展提供了有力支持。
23 8
深度剖析 打造大模型时代的可信AI:技术创新与安全治理并重
|
2天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
10天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
2天前
|
机器学习/深度学习 传感器 人工智能
AI视频监控系统在养老院中的技术实现
AI视频监控系统在养老院的应用,结合了计算机视觉、深度学习和传感器融合技术,实现了对老人体征、摔倒和异常行为的实时监控与分析。系统通过高清摄像头和算法模型,能够准确识别老人的动作和健康状况,并及时向护理人员发出警报,提高护理质量和安全性。
27 14
|
3天前
|
传感器 机器学习/深度学习 人工智能
AI视频监控卫士技术介绍:智能化河道管理解决方案
AI视频监控卫士系统,通过高清摄像头、智能传感器和深度学习技术,实现河道、水库、城市水务及生态保护区的全天候、全覆盖智能监控。系统能够自动识别非法行为、水质变化和异常情况,并实时生成警报,提升管理效率和精准度。
30 13
|
2天前
|
人工智能 计算机视觉
幻觉不一定有害,新框架用AI的幻觉优化图像分割技术
在图像分割领域,传统方法依赖大量手动标注数据,效率低下且难以适应复杂场景。为解决这一问题,研究人员提出了“任务通用可提示分割”方法,利用多模态大型语言模型(MLLM)生成实例特定提示。然而,MLLM常出现幻觉,影响分割精度。为此,研究团队开发了“Prompt-Mask Cycle”(ProMaC)框架,通过迭代生成和验证提示及掩码,有效利用幻觉信息,提高了分割精度和效率。实验结果表明,ProMaC在多个基准数据集上表现出色,为图像分割技术的发展提供了新思路。
14 6
|
1天前
|
存储 人工智能 运维
AI-Native的路要怎么走?一群技术“老炮儿”指明了方向
上世纪70年代,沃兹尼亚克、乔布斯等人成立Homebrew Computer Club,推动个人电脑普及。如今,创原会承袭这一精神,由CNCF执行董事Priyanka Sharma等构建,聚焦云原生和AI技术,汇聚各行业技术骨干,探索前沿科技。2024年创原会年度峰会达成“全面拥抱AI-Native”共识,解决算力与存储瓶颈,推动AI原生应用开发,助力千行万业智能化转型,成为行业创新风向标。
|
8天前
|
机器学习/深度学习 人工智能 监控
AI视频监控技术的核心优势与实践
AI视频监控技术结合了计算机视觉、深度学习和大数据分析,能够实时分析监控画面,识别异常行为和场景变化。其核心在于从“被动记录”转型为“主动识别”,提升监控效率并减少安全隐患。主要应用场景包括泳池管理、健身器械区域、人员密度预警和异常事件检测。系统架构支持多种摄像头设备,采用边缘计算和Docker部署,具备实时性、高准确率和扩展性等优势。未来将优化复杂场景适应性和实时计算负载,进一步提高系统性能。
|
11天前
|
机器学习/深度学习 人工智能 边缘计算
24/7全时守护:AI视频监控技术的深度实现与应用分享
本文深入解析了AI视频监控系统在车间安全领域的技术实现与应用,涵盖多源数据接入、边缘计算、深度学习驱动的智能分析及高效预警机制,通过具体案例展示了系统的实时性、高精度和易部署特性,为工业安全管理提供了新路径。
下一篇
DataWorks