深度学习为什么要选择 PyTorch

简介: 过去几年来,深度学习和机器学习是公众最热门的词汇,对此我们有一个完美的解释。正是因为有了机器学习,系统才能够从经验中学习;而深度学习,则利用庞大的数据集将机器学习带到了更大的规模。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!

过去几年来,深度学习和机器学习是公众最热门的词汇,对此我们有一个完美的解释。

正是因为有了机器学习,系统才能够从经验中学习;而深度学习,则利用庞大的数据集将机器学习带到了更大的规模。

在机器学习和深度学习的推动下,各种编程语言和库应运而生,并使程序员、研究人员和数据科学家们实现了不可思议的成就。

在深度学习领域, TensorFlow 和 PyTorch 两个库之间的最强者之争由来已久,在本文中,我们将更多地关注 PyTorch。

BB6D69C3_0CEA_40e1_BAB6_1C0D7E937623

2016 年,Facebook 发布了面向编程场景的 PyTorch ,它是基于 Lua 的 Torch 库。

PyTorch 是一个免费的开源机器学习库,当前版本为 1.4。PyTorch 已发布近三年,经多番改进,现已处于最佳状态。创建 PyTorch 是为了让人感觉比其他竞争对手更快,更 “Python 化”。Pytorch 也支持 C、C++ 和张量计算。

Google Trend:Python 热度随时间变化的趋势

3DAF8803_D2F9_4c84_9CD6_60315FCCF80B

选择 PyTorch 进行深度学习的原因

在谈到为什么不试试 PyTorch 之前,让我们先看看下面列举的几个独特而令人兴奋的深度学习项目和库,这些都是 PyTorch 促成的:

  • CheXNet:利用深度学习技术在胸片上进行放射科医师级别的肺炎检测。
  • Horizon:应用强化学习平台(Applied RL)。
  • PYRO:Pyro 是一种通用的概率编程语言(probabilistic programming language ,PPL),用 Python 编写,后端由 PyTorch 支持。
  • NVIDIA 的 Kaolin:作为加速 3D 深度学习的 PyTorch 库,用于加速 3D 深度学习。
  • TorchCV:将计算机视觉应用到项目中。
  • PyDLT:一套深度学习工具。
  • fastai 库:用来优化神经网络训练过程。
  • 以及更多。

这些都是建立在 TensorFlow 和 PyTorch 之上的框架和项目。

PyTorch 的优越性

在 TensorFlow 的世界里, PyTorch 能够凭借自己的强项坚守自己。下面是 PyTorch 的一些亮点,解释了为什么 PyTorch 适合深度学习项目。

  1. PyTorch 更 “Python 化”

PyTorch 是一个实用框架,它可以让我们以更 “Python 化” 的方式编写代码。此外,它使用朴素的 Python 代码所支持的那种动态特性是非常了不起的。

与任何其他库相比,PyTorch 更倾向于 Python。这是因为 PyTorch 相对容易理解,而且感觉更自然、更原生,和 Python 代码一致。对于任何使用过 PyTorch 的人来说,他们都会对 PyTorch 的一切有一种亲切的感觉,比如损失函数、优化器、转换、数据加载器以及更多的类。

每个 PyTorch 示例(计算机视觉和自然语言处理)的代码都有一个共同的结构:

data/
experiments/
model/
    net.py
    data_loader.py
train.py
evaluate.py
search_hyperparams.py
synthesize_results.py
evaluate.py
utils.py
  • model/net.py:指定神经网络架构、损失函数和评估指标。
  • model/data_loader.py:指定数据应如何馈送到网络。
  • train.py:包含主训练循环。
  • evaluate.py:包含用于评估模型的主循环。
  • utils.py:用于处理超参数 / 日志 / 存储模型的实用功能。
  1. 易于使用
    与 PyTorch 相比,TensorFlow 的学习曲线相对较徒。Python 程序员需要较少的时间即可使用 PyTorch,因为对他们来说,PyTorch 更像是 Python 框架的扩展。简单的调试和一套优秀的简单 API 就能使程序员轻松驾驭 PyTorch。
  2. 有用的库
    在社区的大力支持下,人们的社区的热情和贡献也越来越大。程序员使用 PyTorch 创建了一些项目,有兴趣的读者可以去看看。下面是一个综合列表,列出了计算机视觉、自然语言处理和生成库等不同领域的一些项目:
  • pro_gan_pytorch:利用 ProGAN 功能。
  • BoTorch:使用贝叶斯优化。
  • ParlAI:用于共享、训练和测试对话模型。
  • OpenNMT-py:用于实现神经机器翻译系统。
  • MUSE:用于多语言词嵌入。
  • skorch:用于将 scikit-learn 代码与 PyTorch 融合。
  1. 轻松实现数据并行
    PyTorch 中的数据并行(Data Parallel)非常高效,可以将数据分成若干批,然后发送到多个 GPU 进行处理。使用这种技术,PyTorch 可以将很大一部分工作负载从 CPU 转移到 GPU。为了实现数据并行,它使用了 torch.nn.DataParallel 类。

Distributed Data-Parallel(分布式数据并行)是 PyTorch 的一项特性,你可以将其与 Data-Parallel(数据并行)结合使用来处理需要大型数据集和模型的用例,这些数据集和模型对单个 GPU 来说过于庞大。当 GPU 池上的所有任务完成之后,结果将被收集、合并,再由 Data-Parallel 发回给你。

def get_cnn(self, arch, pretrained):
        """Load a pretrained CNN and parallelize over GPUs
        """
        if pretrained:
            print(("=> using pre-trained model '{}'".format(arch)))
            model = models.__dict__ arch 
        else:
            print(("=> creating model '{}'".format(arch)))
            model = models.__dict__ arch 

        if arch.startswith('alexnet') or arch.startswith('vgg'):
            model.features = nn.DataParallel(model.features)
            model.cuda()
        else:
            model = nn.DataParallel(model).cuda()

        return model
  1. 至少 70% 开发者使用 PyTorch
    PyTorch 是研究人员的神器,因为事实证明,开发框架的研究人员至少有 70% 都在使用 PyTorch。尽管 TensorFlow 是业界领先的应用开发选择,但它在这方面还没有赶上 PyTorch。这背后的一个原因可能是 PyTorch 的简单易用性和更好的性能。
  2. 移动开发就绪
    从版本 1.3 开始,PyTorch 就增加了对 Android 和 iOS 设备部署的支持。这一特性,为边缘设备带来了 PyTorch 的所有优势,以满足需要较低延迟的应用。PyTorch mobile 背后的目标是通过支持移动平台的基础 API 来缩短开发周期,从而无需导出到诸如 Caffe2 之类的移动框架。这样可以大大减少设备上的占用空间。此外,为了更好地控制,还增加了对构建脚本的精确调优的支持。

PyTorch Mobile 入门:

  1. 易于调试
    当你可以选择访问每一行,并在每一行后打印的常规方式,PyTorch 调试起来很容易。锦上添花的是,PyTorch 中的对象和操作包含了实际的数据而不是符号引用,这让程序员的工作变得更加轻松。PyTorch 的一些标准调试器是:
  • ipdb
  • pdb
  • PyCharm

例如,你可以使用 pdb 的 pdb.set.trace() 函数在代码中放置断点,从而深入到错误的根源。此外,PyTorch 的动态计算图允许在代码执行时进行动态修改和快速调试。

CC1D24D8_8C82_4e64_BD5B_65E98F5B2AEA

  1. 支持 ONNX
    开放神经网络交换格式(Open Neural Network Exchange,OONX)作为人工智能的开源生态系统,为人工智能程序员提供了一个共同的平台,让他们可以在各种框架、工具和库上进行互换工作。ONNX 通过提供可跨多个框架和硬件工作的标准文件格式来实现这一目标。

说到 PyTorch,ONNX 内置了对 PyTorch 和其他一系列框架的支持,如 Caffe2、MXNet、TensorFlow 等等。ONNX 使开发人工智能的程序员更容易导出和迁移他们的 PyTorch 模型,使之成为其他框架可以集成的开放格式。

import torch.onnx
import torchvision

  dummy_input = torch.randn(1, 3, 224, 224)
  model = torchvision.models.alexnet(pretrained=True)
  torch.onnx.export(model, dummy_input, "alexnet.onnx")
  1. 支持动态计算图
    通过将每个模型视为有向无环图,PyTorch 提供了一种定义计算图的动态方法。虽然其他框架也允许静态图定义,但 PyTorch 还支持创建动态计算图,你可以随时对其进行操作。从 PyTorch 的动态特性中获益最多的一个元素是递归神经网络。
  2. 强大的社区支持
    PyTorch 还提供了优秀的社区支持。PyTorch 的主页上就有关于它每个特性的详细文档。对库的所有最新更新都作了很好的解释。对于每个新添加的内容,都可以找到辅导教程和相关资源,易于上手。

PyTorch 论坛是一个非常好的、值得强烈推荐的地方,新手可以在论坛发帖提问,资深工程师也可以在论坛与程序员朋友分享自己的想法。每天都有超过 100 个帖子,这个社区非常活跃,并鼓励人们加入 PyTorch。

下面是一些 PyTorch 开发人员社区、资源和教程,你可以通过这些资源和教程来贡献、学习和解惑:
● PyTorch Discuss form
● PyTorch Slack Community
● PyTorch Examples
● PyTorch Docs
● Github Pytorch Tutorials
● PyTorch Beginner Cheatsheet
● PyTorch Release Notes
● Deep Learning With Pytorch : A 60 Minute Blitz
● Using Tutorial data from Google Drive in Colab
● Docs and Tutorials in Chinese
● Tutorials in Korean

结语

PyTorch 为深度学习程序员提供了大量直观的功能,它为不同技能水平的人们提供了很多帮助。尽管提供了一个简单的切入点,但 PyTorch 也不容小觑,因为它提供的功能不仅在某些方面提供了更好的性能,还提供了额外的独特功能。我们在本文讨论了一些最常被提及的 PyTorch 的特性,以帮助那些对 PyTorch 摇摆不定的人做出选择。

作者简介:
Claire D.,Digitalogy 内容专员,帮助企业在 48 小时内与前 5% 的预先筛选的软件人才建立联系。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-16
本文作者:Claire D.
本文来自:“InfoQ”,了解相关信息可以关注“InfoQ

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
52 7
|
2月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
355 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
219 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
39 1
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
210 59
|
3月前
|
机器学习/深度学习 数据挖掘 PyTorch
🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术
踏入深度学习领域,即使是编程新手也能借助PyTorch这一强大工具,轻松解锁高级数据分析。PyTorch以简洁的API、动态计算图及灵活性著称,成为众多学者与工程师的首选。本文将带你从零开始,通过环境搭建、构建基础神经网络到进阶数据分析应用,逐步掌握PyTorch的核心技能。从安装配置到编写简单张量运算,再到实现神经网络模型,最后应用于图像分类等复杂任务,每个环节都配有示例代码,助你快速上手。实践出真知,不断尝试和调试将使你更深入地理解这些概念,开启深度学习之旅。
50 1
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
深度学习领域中pytorch、onnx和ncnn的关系
PyTorch、ONNX 和 NCNN 是深度学习领域中的三个重要工具或框架,它们在模型开发、转换和部署过程中扮演着不同但相互关联的角色。
218 12
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
4月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch 与边缘计算:将深度学习模型部署到嵌入式设备
【8月更文第29天】随着物联网技术的发展,越来越多的数据处理任务开始在边缘设备上执行,以减少网络延迟、降低带宽成本并提高隐私保护水平。PyTorch 是一个广泛使用的深度学习框架,它不仅支持高效的模型训练,还提供了多种工具帮助开发者将模型部署到边缘设备。本文将探讨如何将PyTorch模型高效地部署到嵌入式设备上,并通过一个具体的示例来展示整个流程。
809 1
|
4月前
|
机器学习/深度学习 算法 PyTorch
PyTorch Lightning:简化深度学习研究与开发
【8月更文第27天】PyTorch Lightning 是一个用于简化 PyTorch 开发流程的轻量级封装库。它的目标是让研究人员和开发者能够更加专注于算法和模型的设计,而不是被训练循环和各种低级细节所困扰。通过使用 PyTorch Lightning,开发者可以更容易地进行实验、调试和复现结果,从而加速研究与开发的过程。
168 1