flink - 反压

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介:

http://wuchong.me/blog/2016/04/26/flink-internals-how-to-handle-backpressure/

https://ci.apache.org/projects/flink/flink-docs-master/internals/back_pressure_monitoring.html

 

反压之所以会是需要的,因为当源端流量过大,而消费端无法及时消费时,可能会导致job crash;比如内存耗尽等;

其实通过合理控制资源的使用,JStorm也可以做到自然反压的

spout pending队列是可以配置的,只有当record被ack,才会发送新的record,也可以达到流控的目的

Flink没有实现特别的反压逻辑,是因为对于flink而言,每层的buffer是可控的,是一个固定大小的bufferpool,当buffer用完时,发送端自然会停止发送,达到限流的目的,从而防止资源耗尽

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
流计算 Java 监控
如何分析及处理 Flink 反压?
反压(backpressure)是实时计算应用开发中,特别是流式计算中,十分常见的问题。反压意味着数据管道中某个节点成为瓶颈,处理速率跟不上上游发送数据的速率,而需要对上游进行限速。
如何分析及处理 Flink 反压?
|
7月前
|
SQL 监控 Java
实时计算 Flink版产品使用问题之出现反压(Backpressure)问题时,该如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
9月前
|
SQL 存储 监控
实时计算 Flink版产品使用合集之Checkpoint监控和反压监控在哪里看
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
9月前
|
消息中间件 Java Kafka
实时计算 Flink版产品使用合集之在处理Kafka实时同步时,遇到反压的情况,该怎么办
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
9月前
|
消息中间件 Oracle 关系型数据库
实时计算 Flink版产品使用合集之从SQLServer到SQLServer进行数据迁移时,遇到反压,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
存储 消息中间件 网络协议
Flink教程(31)- Flink网络流控及反压(下)
Flink教程(31)- Flink网络流控及反压(下)
172 0
|
SQL 分布式计算 网络协议
Flink教程(31)- Flink网络流控及反压(上)
Flink教程(31)- Flink网络流控及反压(上)
126 0
|
消息中间件 监控 Kafka
Flink 1.13.0 反压监控的优化
Flink 1.13.0 版本增加了很多新特征,具体可以参考前面一篇文章,在 Flink 1.13.0 版本之前,我们通常是通过 UI 上面的 BackPressure 或者 Metrics 里面的 inPoolUsage ,outPoolUsage 指标去分析反压出现的位置.在 Flink 1.13.0 版本中对反压监控新增了瓶颈检测,能够帮助我们快速定位反压的位置,因为性能分析的过程中第一个问题就是,哪个操作是瓶颈?为了帮助回答这个问题,Flink 公开了有关任务繁忙(正在执行工作)和反压(具有执行工作的能力,但不能执行任务的原因,因为其后继的算子无法接收更多数据)的度量标准。瓶颈的候选者
Flink 1.13.0 反压监控的优化
|
消息中间件 JSON 监控
Flink 任务 Jackson 解析 JSON 使用不当引发的反压问题
背景 最近业务方反馈线上一个 topic 的数据延迟比较大,然后我查看了这个 topic 的数据是由一个 Flink 任务产生的,于是就找到了这个任务开始排查问题,发现这个任务是一个非常简单的任务,大致的逻辑是 kafka source -> flatmap -> filter -> map -> sink kafka.中间没有复杂的操作,我在本地写了一个简单的程序模拟线上的任务.方便大家理解, 任务的 DAG 如下图所示
Flink 任务 Jackson 解析 JSON 使用不当引发的反压问题
|
存储 消息中间件 分布式计算
Apache Flink 进阶(七):网络流控和反压剖析
本文根据 Apache Flink 系列直播整理而成,由 Apache Flink Contributor、OPPO 大数据平台研发负责人张俊老师分享。主要内容如下: - 网络流控的概念与背景 - TCP的流控机制 - Flink TCP-based 反压机制(before V1.5) - Flink Credit-based 反压机制 (since V1.5) - 总结与思考
Apache Flink 进阶(七):网络流控和反压剖析

热门文章

最新文章