Flink Mysql CDC结合Doris flink connector实现数据实时入库

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: Apache doris通过扩展支持通过 Flink 读写 doris 数仓中的数据表,目前 doris 支持 Flink 1.11.x ,1.12.x,1.13.x,Scala版本:2.12.x目前Flink doris connector目前控制入库通过两个参数:1. sink.batch.size :每多少条写入一次,默认100条2. sink.batch.interval :每个多少秒写入一下,默认1秒这两参数同时起作用,那个条件先到就触发写doris表操作。

Apache Doris 代码仓库地址:apache/incubator-doris 欢迎大家关注加星


Apache doris通过扩展支持通过 Flink 读写 doris 数仓中的数据表,


目前 doris 支持 Flink 1.11.x ,1.12.x,1.13.x,Scala版本:2.12.x


目前Flink doris connector目前控制入库通过两个参数:


  1. sink.batch.size  :每多少条写入一次,默认100条


  1. sink.batch.interval :每个多少秒写入一下,默认1秒


这两参数同时起作用,那个条件先到就触发写doris表操作,


注意:


这里注意的是要启用 http v2 版本,具体在 fe.conf 中配置


enable_http_server_v2=true,同时因为是通过 fe http rest api 获取 be 列表,这俩需要配置的用户有 admin 权限。


Flink Doris Connector 编译


在 doris 的 docker 编译环境 apache/incubator-doris:build-env-1.2 下进行编译,因为 1.3 下面的JDK 版本是 11,会存在编译问题。


在 extension/flink-doris-connector/ 源码目录下执行:

sh build.sh

编译成功后,会在 output/ 目录下生成文件 doris-flink-1.0.0-SNAPSHOT.jar。将此文件复制到 FlinkClassPath 中即可使用 Flink-Doris-Connector。例如,Local 模式运行的 Flink,将此文件放入 jars/ 文件夹下。Yarn集群模式运行的Flink,则将此文件放入预部署包中。


针对Flink 1.13.x版本适配问题

<properties>
        <scala.version>2.12</scala.version>
        <flink.version>1.11.2</flink.version>
        <libthrift.version>0.9.3</libthrift.version>
        <arrow.version>0.15.1</arrow.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <doris.home>${basedir}/../../</doris.home>
        <doris.thirdparty>${basedir}/../../thirdparty</doris.thirdparty>
    </properties>

只需要将这里的 flink.version 改成和你 Flink 集群版本一致,重新编辑即可


使用示例


通过flink cdc实现mysql binlog日志数据的消费,然后通过flink doris connector sql实时导入mysql数据到doris表数据中


这个代码已经提交到apache doris的示例代码库里


org.apache.doris.demo.flink.FlinkConnectorMysqlCDCDemo

注意: 由于Flink doris connector jar包不在Maven中央仓库中,需要单独编译并添加到你项目的classpath中。参考Flink doris connector的编译和使用: Flink doris connector


  1. 首先Mysql 要开启 binlog


具体如何打开binlog请自行搜索或到Mysql官方文档查询


  1. 安装Flink,Flink的安装和使用这里不做介绍,只是在开发环境中给出代码示例


  1. 创建Mysql数据库表
CREATE TABLE `test` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
 ) ENGINE=InnoDB AUTO_INCREMENT=19 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
  1. 创建doris表


CREATE TABLE `doris_test` (
  `id` int NULL COMMENT "",
  `name` varchar(100) NULL COMMENT ""
 ) ENGINE=OLAP
 DUPLICATE KEY(`id`)
 COMMENT "OLAP"
 DISTRIBUTED BY HASH(`id`) BUCKETS 1
 PROPERTIES (
 "replication_num" = "3",
 "in_memory" = "false",
 "storage_format" = "V2"
 );
  1. 创建Flink Mysql CDC


tEnv.executeSql(
  "CREATE TABLE orders (\n" +
  "  id INT,\n" +
  "  name STRING\n" +
  ") WITH (\n" +
  "  'connector' = 'mysql-cdc',\n" +
  "  'hostname' = 'localhost',\n" +
  "  'port' = '3306',\n" +
  "  'username' = 'root',\n" +
  "  'password' = 'zhangfeng',\n" +
  "  'database-name' = 'demo',\n" +
  "  'table-name' = 'test'\n" +
  ")");
  1. 创建Flink Doris Table 映射表


tEnv.executeSql(
  "CREATE TABLE doris_test_sink (" +
  "id INT," +
  "name STRING" +
  ") " +
  "WITH (\n" +
  "  'connector' = 'doris',\n" +
  "  'fenodes' = '10.220.146.10:8030',\n" +
  "  'table.identifier' = 'test_2.doris_test',\n" +
  "  'sink.batch.size' = '2',\n" +
  "  'username' = 'root',\n" +
  "  'password' = ''\n" +
  ")");
  1. 执行插入操作


tEnv.executeSql("INSERT INTO doris_test_sink select id,name from orders");




相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
2月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
546 43
|
2月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
182 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
3月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
163 0
|
2月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
173 10
|
2月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1043 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
3月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
247 1
京东零售基于Flink的推荐系统智能数据体系
|
3月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
|
Oracle 关系型数据库 MySQL
flink cdc 插件问题之报错如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
Java 关系型数据库 MySQL
Flink CDC有见这个报错不?
【2月更文挑战第29天】Flink CDC有见这个报错不?
221 2
|
监控 关系型数据库 MySQL
Flink CDC产品常见问题之使用3.0测试mysql到starrocks启动报错如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

推荐镜像

更多