Apache Flink 漫谈系列(10) - JOIN LATERAL

简介: 聊什么 上一篇《Apache Flink 漫谈系列 - JOIN算子》我们对最常见的JOIN做了详尽的分析,本篇介绍一个特殊的JOIN,那就是JOIN LATERAL。JOIN LATERAL为什么特殊呢,直观说因为JOIN的右边不是一个实际的物理表,而是一个VIEW或者Table-valued Funciton。

聊什么

上一篇《Apache Flink 漫谈系列 - JOIN算子》我们对最常见的JOIN做了详尽的分析,本篇介绍一个特殊的JOIN,那就是JOIN LATERAL。JOIN LATERAL为什么特殊呢,直观说因为JOIN的右边不是一个实际的物理表,而是一个VIEW或者Table-valued Funciton。如下图所示:

image

本篇会先介绍传统数据库对LATERAL JOIN的支持,然后介绍Apache Flink目前对LATERAL JOIN的支持情况。

实际问题

假设我们有两张表,一张是Customers表(消费者id, 所在城市), 一张是Orders表(订单id,消费者id),两张表的DDL(SQL Server)如下:

  • Customers
CREATE TABLE Customers (
  customerid char(5) NOT NULL,
  city varchar (10) NOT NULL
)

insert into Customers values('C001','Beijing');
insert into Customers values('C002','Beijing');
insert into Customers values('C003','Beijing');
insert into Customers values('C004','HangZhou');

查看数据:

  • Orders
CREATE TABLE Orders(
  orderid char(5) NOT NULL,
  customerid char(5) NULL
)

insert into Orders values('O001','C001');
insert into Orders values('O002','C001');
insert into Orders values('O003','C003');
insert into Orders values('O004','C001');

查看数据:

问题示例

假设我们想查询所有Customers的客户ID,地点和订单信息,我们想得到的信息是:

用INNER JOIN解决

如果大家查阅了《Apache Flink 漫谈系列 - JOIN算子》,我想看到这样的查询需求会想到INNER JOIN来解决,SQL如下:

SELECT 
    c.customerid, c.city, o.orderid 
FROM Customers c JOIN Orders o 
    ON o.customerid = c.customerid

查询结果如下:

但如果我们真的用上面的方式来解决,就不会有本篇要介绍的内容了,所以我们换一种写法。

用 Correlated subquery解决

Correlated subquery 是在subquery中使用关联表的字段,subquery可以在FROM Clause中也可以在WHERE Clause中。

  • WHERE Clause
    用WHERE Clause实现上面的查询需求,SQL如下:
SELECT 
    c.customerid, c.city
FROM Customers c WHERE c.customerid IN (
    SELECT 
      o.customerid, o.orderid
    FROM Orders o
    WHERE o.customerid = c.customerid
)

执行情况:

上面的问题是用在WHERE Clause里面subquery的查询列必须和需要比较的列对应,否则我们无法对o.orderid进行投影, 上面查询我为什么要加一个o.orderid呢,因为查询需求是需要o.orderid的,去掉o.orderid查询能成功,但是拿到的结果并不是我们想要的,如下:

SELECT 
    c.customerid, c.city
FROM Customers c WHERE c.customerid IN (
    SELECT 
      o.customerid
    FROM Orders o
    WHERE o.customerid = c.customerid
)

查询结果:

可见上面查询结果缺少了o.orderid,不能满足我们的查询需求。

  • FROM Clause
    用FROM Clause实现上面的查询需求,SQL如下:
SELECT 
    c.customerid, c.city, o.orderid 
FROM Customers c, (
    SELECT 
      o.orderid, o.customerid 
    FROM Orders o
    WHERE o.customerid = c.customerid
) as o

我们会得到如下错误:

错误信息提示我们无法识别c.customerid。在ANSI-SQL里面FROM Clause里面的subquery是无法引用左边表信息的,所以简单的用FROM Clause里面的subquery,也无法解决上面的问题,
那么上面的查询需求除了INNER JOIN 我们还可以如何解决呢?

JOIN LATERAL

我们分析上面的需求,本质上是根据左表Customers的customerid,去查询右表的Orders信息,就像一个For循环一样,外层是遍历左表Customers所有数据,内层是根据左表Customers的每一个Customerid去右表Orders中进行遍历查询,然后再将符合条件的左右表数据进行JOIN,这种根据左表逐条数据动态生成右表进行JOIN的语义,SQL标准里面提出了LATERAL关键字,也叫做 lateral drive table

CROSS APPLY和LATERAL

上面的示例我们用的是SQL Server进行测试的,这里在多提一下在SQL Server里面是如何支持 LATERAL 的呢?SQL Server是用自己的方言 CROSS APPLY 来支持的。那么为啥不用ANSI-SQL的LATERAL而用CROSS APPLY呢? 可能的原因是当时SQL Server为了解决TVF问题而引入的,同时LATERAL是SQL2003引入的,而CROSS APPLY是SQL Server 2005就支持了,SQL Server 2005的开发是在2000年就进行了,这个可能也有个时间差,等LATERAL出来的时候,CROSS APPLY在SQL Server里面已经开发完成了。所以种种原因SQL Server里面就采用了CROSS APPLY,但CROSS APPLY的语义与LATERAL却完全一致,同时后续支持LATERAL的Oracle12和PostgreSQL94同时支持了LATERALCROSS APPLY

问题解决

那么我们回到上面的问题,我们用SQL Server的CROSS APPLY来解决上面问题,SQL如下:

上面得到的结果完全满足查询需求。

JOIN LATERAL 与 INNER JOIN 关系

上面的查询需求并没有体现JOIN LATERALINNER JOIN的区别,我们还是以SQL Server中两个查询执行Plan来观察一下:

上面我们发现经过SQL Server优化器优化之后的两个执行plan完全一致,那么为啥还要再造一个LATERAL 出来呢?

性能方面

我们将上面的查询需求稍微改变一下,我们查询所有Customer和Customers的第一份订单信息。

  • LATERAL 的写法
SELECT 
    c.customerid, c.city, o.orderid 
FROM Customers c CROSS APPLY (
    SELECT 
     TOP(1) o.orderid, o.customerid 
    FROM Orders o 
    WHERE o.customerid = c.customerid
    ORDER BY o.customerid, o.orderid
) as o

查询结果:

我们发现虽然C001的Customer有三笔订单,但是我们查询的TOP1信息。

  • JOIN 写法
SELECT  c.customerid, c.city, o.orderid
 FROM    Customers c
  JOIN (
   SELECT 
     o2.*, 
     ROW_NUMBER() OVER (
        PARTITION BY customerid 
        ORDER BY orderid
      ) AS rn
   FROM    Orders o2
 ) o
ON c.customerid = o.customerid AND o.rn = 1

查询结果:

如上我们都完成了查询需求,我们在来看一下执行Plan,如下:

我们直观发现完成相同功能,使用CROSS APPLY进行查询,执行Plan简单许多。

功能方面

在功能方面INNER JOIN本身在ANSI-SQL中是不允许 JOIN 一个Function的,这也是SQL Server当时引入CROSS APPLY的根本原因。我们以一个SQL Server中DMV(相当于TVF)查询为例:

SELECT 
   name, log_backup_time 
FROM sys.databases AS s
 CROSS APPLY sys.dm_db_log_stats(s.database_id); 

查询结果:

Apache Flink对 LATERAL的支持

前面我花费了大量的章节来向大家介绍ANSI-SQL和传统数据库以SQL Server为例如何支持LATERAL的,接下来我们看看Apache Flink对LATERAL的支持情况。

Calcite

Apache Flink 利用 Calcite进行SQL的解析和优化,目前Calcite完全支持LATERAL语法,示例如下:

SELECT 
    e.NAME, e.DEPTNO, d.NAME 
FROM EMPS e, LATERAL (
    SELECT 
    *
    FORM DEPTS d 
    WHERE e.DEPTNO=d.DEPTNO
 ) as d;

查询结果:

我使用的是Calcite官方自带测试数据。

Flink

截止到Flink-1.6.2,Apache Flink 中有两种场景使用LATERAL,如下:

  • UDTF(TVF) - User-defined Table Funciton
  • Temporal Table - 涉及内容会在后续篇章单独介绍。

本篇我们以在TVF(UDTF)为例说明 Apache Fink中如何支持LATERAL

UDTF

UDTF- User-defined Table Function是Apache Flink中三大用户自定义函数(UDF,UDTF,UDAGG)之一。 自定义接口如下:

  • 基类
/**
  * Base class for all user-defined functions such as scalar functions, table functions,
  * or aggregation functions.
  */
abstract class UserDefinedFunction extends Serializable {
  // 关键是FunctionContext中提供了若干高级属性(在UDX篇会详细介绍)
  def open(context: FunctionContext): Unit = {}
  def close(): Unit = {}
}
  • TableFunction
/**
  * Base class for a user-defined table function (UDTF). A user-defined table functions works on
  * zero, one, or multiple scalar values as input and returns multiple rows as output.
  *
  * The behavior of a [[TableFunction]] can be defined by implementing a custom evaluation
  * method. An evaluation method must be declared publicly, not static and named "eval".
  * Evaluation methods can also be overloaded by implementing multiple methods named "eval".
  *
  * User-defined functions must have a default constructor and must be instantiable during runtime.
  *
  * By default the result type of an evaluation method is determined by Flink's type extraction
  * facilities. This is sufficient for basic types or simple POJOs but might be wrong for more
  * complex, custom, or composite types. In these cases [[TypeInformation]] of the result type
  * can be manually defined by overriding [[getResultType()]].
  */
abstract class TableFunction[T] extends UserDefinedFunction {

  // 对于泛型T,如果是基础类型那么Flink框架可以自动识别,
  // 对于用户自定义的复杂对象,需要用户overwrite这个实现。
  def getResultType: TypeInformation[T] = null
}

上面定义的核心是要求用户实现eval方法,我们写一个具体示例。

  • 示例
// 定义一个简单的UDTF返回类型,对应接口上的 T 
case class SimpleUser(name: String, age: Int)
// 继承TableFunction,并实现evale方法
// 核心功能是解析以#分割的字符串
class SplitTVF extends TableFunction[SimpleUser] {
  // make sure input element's format is "<string>#<int>"
  def eval(user: String): Unit = {
    if (user.contains("#")) {
      val splits = user.split("#")
      collect(SimpleUser(splits(0), splits(1).toInt))
    }
  }
}

示例(完整的ITCase):

  • 测试数据
    我们构造一个只包含一个data字段的用户表,用户表数据如下:
data
Sunny#8
Kevin#36
Panpan#36
  • 查询需求
    查询的需求是将data字段flatten成为name和age两个字段的表,期望得到:
name age
Sunny 8
Kevin 36
Panpan 36
  • 查询示例
    我们以ITCase方式完成如上查询需求,完整代码如下:
@Test
  def testLateralTVF(): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val tEnv = TableEnvironment.getTableEnvironment(env)
    env.setStateBackend(getStateBackend)
    StreamITCase.clear

    val userData = new mutable.MutableList[(String)]
    userData.+=(("Sunny#8"))
    userData.+=(("Kevin#36"))
    userData.+=(("Panpan#36"))

    val SQLQuery = "SELECT data, name, age FROM userTab, LATERAL TABLE(splitTVF(data)) AS T(name, age)"

    val users = env.fromCollection(userData).toTable(tEnv, 'data)

    val tvf = new SplitTVF()
    tEnv.registerTable("userTab", users)
    tEnv.registerFunction("splitTVF", tvf)

    val result = tEnv.SQLQuery(SQLQuery).toAppendStream[Row]
    result.addSink(new StreamITCase.StringSink[Row])
    env.execute()
    StreamITCase.testResults.foreach(println(_))
  }

运行结果:

上面的核心语句是:

val SQLQuery = "SELECT data, name, age FROM userTab, LATERAL TABLE(splitTVF(data)) AS T(name, age)"

如果大家想运行上面的示例,请查阅《Apache Flink 漫谈系列 - SQL概览》中 源码方式 搭建测试环境。

小结

本篇重点向大家介绍了一种新的JOIN类型 - JOIN LATERAL。并向大家介绍了SQL Server中对LATERAL的支持方式,详细分析了JOIN LATERALINNER JOIN的区别与联系,最后切入到Apache Flink中,以UDTF示例说明了Apache Flink中对JOIN LATERAL的支持,后续篇章会介绍Apache Flink中另一种使用LATERAL的场景,就是Temporal JION,Temporal JION也是一种新的JOIN类型,我们下一篇再见!

关于点赞和评论

本系列文章难免有很多缺陷和不足,真诚希望读者对有收获的篇章给予点赞鼓励,对有不足的篇章给予反馈和建议,先行感谢大家!

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
788 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
453 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
5月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1910 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
6月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
699 6
|
6月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
585 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
SQL 架构师 API
《Apache Flink 知其然,知其所以然》系列视频课程
# 课程简介 目前在我的公众号新推出了《Apache Flink 知其然,知其所以然》的系列视频课程。在内容上会先对Flink整体架构和所适用的场景做一个基础介绍,让你对Flink有一个整体的认识!然后对核心概念进行详细介绍,让你深入了解流计算中一些核心术语的含义,然后对Flink 各个层面的API,如 SQL/Table&DataStreamAPI/PythonAPI 进行详细的介绍,以及
1613 0
《Apache Flink 知其然,知其所以然》系列视频课程
|
6月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
788 9
Apache Flink:从实时数据分析到实时AI
|
6月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
709 0
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
892 33
The Past, Present and Future of Apache Flink
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1672 13
Apache Flink 2.0-preview released

热门文章

最新文章

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多