Stream Processing for Everyone with SQL and Apache Flink

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介:

Where did we come from?

With the 0.9.0-milestone1 release, Apache Flink added an API to process relational data with SQL-like expressions called the Table API. The central concept of this API is a Table, a structured data set or stream on which relational operations can be applied. The Table API is tightly integrated with the DataSet and DataStream API. A Table can be easily created from a DataSet or DataStream and can also be converted back into a DataSet or DataStream as the following example shows

从0.9开始,引入Table API来支持关系型操作,

复制代码
val execEnv = ExecutionEnvironment.getExecutionEnvironment
val tableEnv = TableEnvironment.getTableEnvironment(execEnv)

// obtain a DataSet from somewhere
val tempData: DataSet[(String, Long, Double)] =

// convert the DataSet to a Table
val tempTable: Table = tempData.toTable(tableEnv, 'location, 'time, 'tempF)
// compute your result
val avgTempCTable: Table = tempTable
 .where('location.like("room%"))
 .select(
   ('time / (3600 * 24)) as 'day, 
   'Location as 'room, 
   (('tempF - 32) * 0.556) as 'tempC
  )
 .groupBy('day, 'room)
 .select('day, 'room, 'tempC.avg as 'avgTempC)
// convert result Table back into a DataSet and print it
avgTempCTable.toDataSet[Row].print()
复制代码

可以看到可以很简单的把dataset转换为Table,指定其元数据即可

然后对于table就可以进行各种关系型操作,

最后还可以把Table再转换回dataset

Although the example shows Scala code, there is also an equivalent Java version of the Table API. The following picture depicts the original architecture of the Table API.

image

对于table的关系型操作,最终通过code generation还是会转换为dataset的逻辑

 

Table API joining forces with SQL

the community was also well aware of the multitude of dedicated “SQL-on-Hadoop” solutions in the open source landscape (Apache HiveApache Drill,Apache ImpalaApache Tajo, just to name a few).

Given these alternatives, we figured that time would be better spent improving Flink in other ways than implementing yet another SQL-on-Hadoop solution.

What we came up with was a revised architecture for a Table API that supports SQL (and Table API) queries on streaming and static data sources. 
We did not want to reinvent the wheel and decided to build the new Table API on top of Apache Calcite, a popular SQL parser and optimizer framework. Apache Calcite is used by many projects including Apache Hive, Apache Drill, Cascading, and many more. Moreover, the Calcite community put SQL on streams on their roadmap which makes it a perfect fit for Flink’s SQL interface.

虽然社区已经有很多的Sql-on-Hadoop方案,flink希望把时间花在更有价值的地方,而不是再实现一套

但是当前这样的需要非常强烈,所以在revise Table API的基础上实现对SQL的支持  
对于SQL的支持,借助于Calcite,并且Calcite已经把SQL on streams放在roadmap上,有希望成为streaming sql的标准

Calcite is central in the new design as the following architecture sketch shows:

image

The new architecture features two integrated APIs to specify relational queries, the Table API and SQL. 
Queries of both APIs are validated against a catalog of registered tables and converted into Calcite’s representation for logical plans. 
In this representation, stream and batch queries look exactly the same. 
Next, Calcite’s cost-based optimizer applies transformation rules and optimizes the logical plans. 
Depending on the nature of the sources (streaming or static) we use different rule sets. 
Finally, the optimized plan is translated into a regular Flink DataStream or DataSet program. This step involves again code generation to compile relational expressions into Flink functions.

这里Table API和SQL都统一的转换为Calcite的逻辑plans,然后再通过Calcite Optimizer进行优化,最终通过code generation转换为Flink的函数

With this effort, we are adding SQL support for both streaming and static data to Flink. 
However, we do not want to see this as a competing solution to dedicated, high-performance SQL-on-Hadoop solutions, such as Impala, Drill, and Hive. 
Instead, we see the sweet spot of Flink’s SQL integration primarily in providing access to streaming analytics to a wider audience. 
In addition, it will facilitate integrated applications that use Flink’s API’s as well as SQL while being executed on a single runtime engine

再次说明,支持SQL并不是为了再造一个专用的SQL-on-Hadoop solutions;而是为了让更多的人可以来使用Flink,说白了,这块不是当前的战略重点

 

How will Flink’s SQL on streams look like?

So far we discussed the motivation for and architecture of Flink’s stream SQL interface, but how will it actually look like?

复制代码
// get environments
val execEnv = StreamExecutionEnvironment.getExecutionEnvironment
val tableEnv = TableEnvironment.getTableEnvironment(execEnv)

// configure Kafka connection
val kafkaProps = ...
// define a JSON encoded Kafka topic as external table
val sensorSource = new KafkaJsonSource[(String, Long, Double)](
    "sensorTopic",
    kafkaProps,
    ("location", "time", "tempF"))

// register external table
tableEnv.registerTableSource("sensorData", sensorSource)

// define query in external table
val roomSensors: Table = tableEnv.sql(
    "SELECT STREAM time, location AS room, (tempF - 32) * 0.556 AS tempC " +
    "FROM sensorData " +
    "WHERE location LIKE 'room%'"
  )

// define a JSON encoded Kafka topic as external sink
val roomSensorSink = new KafkaJsonSink(...)

// define sink for room sensor data and execute query
roomSensors.toSink(roomSensorSink)
execEnv.execute()
复制代码

跟Table API相比,可以通过纯粹的SQL来做相应的操作

 

当前SQL不支持,windows aggregation,

但是Calcite的Streaming SQL是支持的,比如,

复制代码
SELECT STREAM 
  TUMBLE_END(time, INTERVAL '1' DAY) AS day, 
  location AS room, 
  AVG((tempF - 32) * 0.556) AS avgTempC
FROM sensorData
WHERE location LIKE 'room%'
GROUP BY TUMBLE(time, INTERVAL '1' DAY), location
复制代码

可以用Table API实现,

val avgRoomTemp: Table = tableEnv.ingest("sensorData")
  .where('location.like("room%"))
  .partitionBy('location)
  .window(Tumbling every Days(1) on 'time as 'w)
  .select('w.end, 'location, , (('tempF - 32) * 0.556).avg as 'avgTempCs)

 

What’s up next?

The Flink community is actively working on SQL support for the next minor version Flink 1.1.0. In the first version, SQL (and Table API) queries on streams will be limited to selection, filter, and union operators. Compared to Flink 1.0.0, the revised Table API will support many more scalar functions and be able to read tables from external sources and write them back to external sinks. A lot of work went into reworking the architecture of the Table API and integrating Apache Calcite.

In Flink 1.2.0, the feature set of SQL on streams will be significantly extended. Among other things, we plan to support different types of window aggregates and maybe also streaming joins. For this effort, we want to closely collaborate with the Apache Calcite community and help extending Calcite’s support for relational operations on streaming data when necessary.

1.2会有window aggregates和streaming joins,值得期待。。。
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
25天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
313 33
The Past, Present and Future of Apache Flink
|
3月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
895 13
Apache Flink 2.0-preview released
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
114 3
|
21天前
|
SQL 存储 缓存
Flink SQL Deduplication 去重以及如何获取最新状态操作
Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。
97 14
|
3月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
91 1
|
3月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
229 0
|
3月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
64 0
|
3月前
|
分布式计算 监控 大数据
大数据-129 - Flink CEP 详解 Complex Event Processing - 复杂事件处理
大数据-129 - Flink CEP 详解 Complex Event Processing - 复杂事件处理
81 0
|
SQL 消息中间件 分布式计算
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(上)
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(上)
280 0
|
数据采集 分布式计算 Kubernetes
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(下)
《Apache Flink 案例集(2022版)》——5.数字化转型——移动云Apache Flink 在移动云实时计算的实践(下)
305 0

热门文章

最新文章

推荐镜像

更多